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51. CANTILEVER-TYPE PRESSURE-ENERGIZED SEALS

by

J. Wallach u-'-

D1.0 Summary /_3 _ I

Pressure-energized static seals are used between the flanges of a

flanged joint to form a leak-tight seal between the flanges and maintain

this seal as the internal pressure is increased and the flanges tend to

separate. The characteristics and design of the cantilever type of pressure-

energized seals are presented in this section. 0-ring type seals are dis-

cussed in Section 52.

The geometry and materials of many of the seals used in the missile

industry are similar enough to allow their analysis using a small number of

generalized mathematical models. Each model is analyzed and curves of its

characteristics calculated for a set of typical dimensions. The designer

can compare his requirements with the characteristics of the various types

of seals and choose the most appropriate one. Then he completes the de-

tailed design of the seal by using the design formulas in the section for

that particular seal.

The derivations of the design formulas are in the appendix, Section

51.5. Included in these derivations are other formulas of less frequent

interest. Section 51.5.8 of the appendix is devoted to the justification

of the use of beam theory in the derivation of the design formulas.
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51.1 Introduction

Static seals for use with pipe flanges where high internal pressures

are encountered are usually pressure-energized. High internal pressures

cause flange separation and unless the initial bolting stresses are very

high may reduce the seal-to-flange face contact pressure to a point where

leakage occurs. The use of high bolt stresses means larger bolts and flanges

and a resultant increases in weight. In order to avoid this weight increase

and maintain a sufficiently large seal-to-flange sealing pressure, the seal

is designed so that an increase in pressure results in an increase in the

sealing force.

The flanges are designed to preload the seal to furnish a minimum seal-

to-flange sealing force for zero internal pressure. Otherwise the effect of

the flange on the seal is minimized. A typical design has the seal sitting

in a recess in the flange, see Fig. 51.1. The difference between the free

height of the seal and restrained height results in a preloading of the seal.

The restrained height is also affected by the bolt load and resulting

compression in the flange faces. However, this effect is small as compared

to the difference between the free height and the depth of the recess.

_J
Fig. 51. I

INSTAUATION OF CANTILEVER-TYPE PRESSURE ENERGIZED SEAL

Therefore, the effect of the bolt load on the seal is secondary. The bolt
pre-load need only be sufficient to keep the flange faces in contact under

all loading conditton_.

Hr.

of

Seal

The sealing of the fluid depends primarily on the seal-to-flange sealing

force. AS the flange and seal are usually both made of a high-strength metal,

the seal lip contacting the flange is often covered with a softer material

such as Teflon. The plastic flow of this softer material effects the seal.

The minimum sealing force required is determined by the properties of this
material.

An analysis is needed to determine the sealing force characteristics for

various types of pressure-energized seals. In this section various seal

designs are analized to determine the deflection, stress, and sealing force,

and to generate design formulas and methods. A number of generalized designs
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are chosen which are representative of the seals in use in the missile

industry° The mathematical models combine simplicity and desisn accuracy.
Because of the recessed flange face the seal analysis considers only the seal

and neglects the surrounding structure.

6
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51.2 Nomenclature

a,b
A

d

D

E

F

h

I
c

k

K

L

m

M

n

P
r

R

R
S

Q
t

V

W

x

Y
z

Constants

Amplitude of edge deflection variation

12(l-v 2)/E

Flexural rigidity Eh_/12(1-V 2)
Modulus of elasticity

Force

Thickness of seal leg

Free height of seal

Restrained height of seal

Area moment about the centroid

Axial distance from seal centerline to outside

surface of seal leg

Constants of integration

Length of seal leg

Axial length

Reciprocal Poisson's ratio

Moment

Length of seal lip

Pressure

Radius of seal

Edge load or reactive load

Sealing force

Shear

Web thickness

Total edge shear

Circumferential length

Length along beam (seal leg)
Transverse deflection

Circumferential linear coordinate

Units

inches

inch2/lb
inch-lb

psi

Ib/in

inches

inches

inches

in4

inches

inches

inches

inch ib/in

inches

psi
inches

Ib/in

Ib/in

ib/in

inches

Ib/in

inches

inches

inches

inches

=

i

5

5

5

6

v

o

A

m

r

Axial deflection

Membrane deflection (radial)

Radial deflection

Percent error

Coefficient of friction

Poisson's ratio

Stress with subscripts

b - using beam theory

m - maximum

p - using plate theory

s - using shell theory

Angle
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inches

inches

inches

psi

radians



51.3 Design of Seals

Three general types of pressure-energized seals are analyzed and

discussed in this section° For each type of seal considered, a design

procedure, design equations, and curves for a typical seal showing the

seal's characteristics are presented° The analysis for each seal is given

in the appendix_Section 51.5, as noted by the references° In addition to

the design equations, included in the appendix_Section 51.5 are the equa-

tions for the seal leg deflection and stress, and the seal-to-flange seal-

ing force.

The seal cross-section, as shown below, consists of a web and two

legs with a small lip on the end of each lego All of the cross-sectional

dimensions are usually much smaller than the inside radius of the seal, and

the seal legs are much more flexible than the web. Therefore, the seal is

analyzed as three separate parts: Two identical legs and the web. The

web designs considered are represented by one model_and the legs are repre-

sented by three different models:

i. Seal with Straight Leg of Constant Width (Section 51.301)

2. Seal with Straight Leg of Linearly Varying Thickness

(Section 51.3.2)

3. Seal with Straight Leg of Constant Width without Lip

(Section 51.3o3)

Web

_pa_ _nglMaTefilan j__ "

Cente

Lip

line

FIGURE 51.2 Cross-section of Cantilever Type Pressure

Energized Seal
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The characteristics of each of these models have been analyzed and with
the use of typical dimensions are illustrated in Section 51.3.6. Based on
the needs of a particular application, one of the seal leg designs maybe
chosen by a comparison of their characteristics.

The chosen seal configuration may then be designed by using the design
procedures as outlined in this section_ In each case it is assumedthat
the seal body material and its properties, the required sealing force, the
maximumallowable stress, and the inside seal radius are known. The seal
body materials used are usually steel or aluminum for their structural
properties, provided they are compatible with the fluid contained. In any
case the material could be specified and its modulus of elasticity and
Poisson's ratio either knownor readily determined. The required sealing
force is determined from a consideration of the flange faces, sealing
material on the seal lip, and pressure and properties of the retained fluid.
The method of determining this sealing force is discussed in Volume 3 of
this report. The maximumallowable stress is determined by the designer
based on the seal material and application° The inside radius of the seal
is usually slightly larger than the inside radius of the pipe and depends
primarily on the flange design° The seal leg design is based on the above
considerations.

The seal web is primarily a structural member,but it also has a direct
effect on the sealing abilities of the seal. Radial motion between the
seal lip and flange face will break a seal effected between the lip and
flange and maycause leakage. Therefore, in the seal web design, consid-
eration is given to the radial growth of the seal due to internal pressure
and differential thermal growth of the flanges and seal. The seal is not
as stiff as the flanges and will tend to grow more radially when pressurized.
Relative motion between the seal and flange may result from different
amounts of thermal expansion of the seal and flange, and it mayoccur due
to a differential thermal growth of the flanges. If one flange grows more
than the other, the seal will have to rotate about an axis normal to its
cross-section, Figure 51.2, in order to follow the motion of the flanges.
Otherwise the seal lip must slip on the flange face.

Making the seal and flange of the samematerial will tend to eliminate
the problem of differential thermal expansion of the seal and flange.
However, during thermal transients there is still the possibility of the
seal and flange being at different temperatures. A stiffer seal web will
decrease the differential radial growth of the seal and flange due to
internal pressure, but will also makethe seal cross-section more difficult
to rotate about its own axis. Therefore, the web design is a balance
between the need to limit the growth due to pressure and the ability to
accommodatethe flange motion. Also, consideration should be given to the
design of the recess in the flange face. It is possible to limit the
radial motion of the seal by using the flange recess as a backing to the
seal web.

The depth of the flange recess where the seal sits, see Figure 51.1,



is one of the prime factors determining the sealing force. As shownin the
figure, if the restrained height of the seal, HR, is less than the free
height of the seal, HF, the seal is axially compressed. This axial com-
pression is essential when installing the seal in order to insure seating
the seal and preventing leakage at low pressures° As an axial tensile
load is applied to the flanged joint, the flanges will separate and the
restrained height of the seal increases. If this tensile load is applied
prior to the pressurization of the joint, it is important that the restrain-
ed height remains less than the free height, otherwise the seal will separ-
ate from the flangeo If the flanged joint is pressurized as the tensile
load is applied, the pressure will force the seal leg to follow the flange
separation° In this case, it is important to match the seal-leg deflection
characteristics to those of the flarges so that the required sealing force
is maintained° A decrease in the sealing force maycause leakage_and an
increase may cause damageto the sealing material on the seal lipo In this
section the restrained height of the seal is assumedknown. The determina-
tion of the restrained height comes from the load_.deflection analysis of the
flanged joint. Each type of flanged joint may require a different analy-
tical approach. Included in this report are analyses of somedesign
examples illustrating different approaches, Section 13. Then the seal leg
itself can be designed on the assumption that the flange face is flat. If
the soft material coating were not used_it would be necessary to deform
the seal lip plastically or to deform the seal leg to follow the contour
of the asperity°

An analysis is included in Section 51o3_5 to determine the increase
in internal pressure necessary to make the seal leg conform elastically to
a sinusoidal edge restraint° A radial scratch in the flange face is simu-
lated by making the peak.-to,_peaklength of the sinusoid very small.
Flange warpage can also be simulated by a long peak-to-peak length.

The seal leg cross-section shownin Figure 51.2 indicates that the
seal leg is a circular flat plate° Also, in someseal designs the seal leg
is a conical shell. However, in most seal leg designs the leg length is
sufficiently smaller than the inside radius to analyze_" the leg as a beam.
This procedure is used in this report, but not without justification. A
set of curves are included in Section 51o5o8 showing the error incurred by
applying beamtheory to a particular seal leg. These errors are generally
negligible for design purposes°

I0
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51.3.1 Seal with Straight Leg of Constant Width

%

,I

7

H_ UTaloaded

4-
_ _ _ _ __H_' _' $ Loaded

Fig. 51.3

SEAL CROSS-SECTION

The leg is analyzed as _ _uilt-in beam of length, _, loaded by a

uniform load p andsdeflected a distance y. by a simple support. The distance

y_ is the difference between the free height, H_, and restrained height, HR .
T_e analysis determining the equations for theleg deflection and stresses_

and theseallng force, Rs, is in the appendix, Section 51.5.1.

The dimensions for the cross-section are determined from the design

equations of Section 51.5.1_ Having determined the modulus of elas-

ticity,Poisson's ratio, the minimum sealing force and maximum allowable

stress, select one or more reasonable values of the length to thickness ratio,

_/h, and calculate y_ from equation (5).

Y_= - (4Rs/E) (I-v 2) (%/h) 3 (5)

Calculate _ from equation (6).

6y_E

(I-v 2) C_/h)[4_m-3pC_/h) 2 ]
(6)

Choose the most reasonable values of h and _ using design Judgment.

If the seal leg is at an angle _ to the flange face, see Fig. 51.4,

equation (5) changes to the following:

y_= _ (4Rs/E) (l-v 2) (_lh) 3 cos (9)



Equation (6) is the sameas before, but the value of y_ is changed to

y_'- (RF-RR)/cos (1)

FIGURE 51_4 Seal Lel_

The web design formulas are given in the appendix , Sec. 51.5.4. The web

length is chosen as short as possible consistent wlth the overall structural

requirements of the seal, see Section 51.3.4. The web thickness should be

equal to or greater than the leg thickness at the web end of the leg. It

must also be equal to or larger than the thickness calculated using equation

(49). r3 isthemean web radius..

t= p r3/_ m '(49)

12
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51.3.2 Seal With Straight Le_ of Linearly Varying Thickness.

.......t
IRs

Fig. 51.5

TAPERED SEAL LEG

As in Section 51.3. l, the seal leg is analyzed as a built-ln beam loaded

by a uniform pressure load p and deflected a distance Yo by a simple support.

The leg deflection and stress, sealing force and design equations are

derived in the appendix, Section 51.5.2.

The design method begins with the specification of the modulus of

elasticity, Poisson's ratio, minimum sealing force and maximum allowable

stress. The initial deflection of the sealing end, Yo' required to give the

minimum sealing force, Rs, is given by equation (21).

dR Ib_(2a + 3b_ ) 1
s - 2 log (i + b_/a)

Y°= 2b 3 (a + b_) 2 (21)

Substituting equation (21) directly into the equation for the

maximum bending stress (equation 20) results in a relationship relating

a, b, and _.

¥

e - p_ - 2R

(a + b_) 2
m s

p (a + b_) 2

b b,g

(a + b_) 2

(6a 2 + 9ab_ + 2b2_ 2)
6a log (I + b_/a)]

(2a + 3b_) - 2 log (I + b_/a)]

(22)



This is too complex to solve in general terms for either a, b or _.
To make the equation more tractable, assumea value for the leg thickness
at both ends, a and h .

h_ = a + b_

Another relation between b and _ is obtained from the above equation which
may be solved for b.

b = (h_ - a)/_ (23)

Substitution of values of a and h_ reduces equation (22) by allowing
numerical evaluation of the natural logarithm terms. Further substitution
of equation (23) for b and all the other knownparameters reduces equation
(22) to a polynomial in _. This equation can then be solved for _ and b
can be determined from equation (23).

The calculated values may be unreasonable, in which case other values
should be tried for a and h . As an alternate procedure, Ommaybe un-
specified and calculated fo_ chosen values of a, b, and _. Any calculated
value of a less than the maximumallowable is acceptable.m

The web design is the sameas that for the case described in Section
51.3.1. See also Section 51.3.4.
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51.3.3 Seal with Straight Leg of Constant Width Without Lip

The seal is similar to the seal described in Section 51.3.1 except

there is no lip at the end of the seal legs. The seal is effected between

the seal leg and flange face. As the leg is usually at a small angle to the

flange face, decreasing the restrained height, HR, of the seal or increasing
the internal pressure, p, causes the point of sealing to move closer to the

seal web, see Figure 51.6.

As in Sections 51.3.1 and 51.3.2 the seal leg is analyzed as a

built-in beam. The portion of the leg from X = _. to _ is in simple com-
I

pression. A free-body diagram of this section shows that the end shears

and moments must be zero. Therefore, the end moment on the other section of

the leg (x = 0 to _.) must be zero and the end shear is only due to thei
reaction of the flange face, R . This means the sealing between the seal

. S .

and flange is effected only along the llne of contact (into the paper on

Figure 53.6) at _.. For further information on the seal characteristics see

Section 51.5.3 oflthe appendix.

k

k

Web 

//////

_'_ _ Unloaded

\_ Leg

I/_-..._ ..... Loa-_e d --

LI_ . _'£i -..__Flange Face

Y

FIGURE 51.6

Cross-section of Seal with Straight Leg

of Constant Width Without Lip

The design of the seal begins with a choice of material and deter-

mination of the minimum sealing force, R , required. The web design is the
same as that for the seal described in S_ction 51.3.1 and is discussed in

Section 51.3.4. The leg design is an iterative procedure beginning with the

selection of the lengths H , k, and y_. Then calculate the minimum leg
length required using equation (47).



3 Y_ (Hr ,k.)

o _ 2 _k)2 ' (47)
V y_ - 4 (Hr

This is the active leg length _.when the internal pressure is zero. Unless
the leg length is greater than _ the seal leg will not effect a seal with

• O

the flange face at assembly.

Next calculate the seal leg thickness h.

216 (I - v2) y_ R ° (HR - k)

E _- 4 (HR - k) 2

Then calculate the minimum active leg length
m

4

(Hr -k) _/ 216 y_2'Ro / Pm,

_m = [2 2 ] _/8Y_- 4 (Hr - k)

(45)

(46)

This is the active leg length when the internal pressure is a maximum _Pm_
If the calculated dimensions do not constitute an acceptable design, cHooSe

other values of H , k and YZ and repeat the calculations until an acceptable

design is obtaine_. Where _ number of iterations are required or a number

of seals are to be designed_it is suggested that curves be plotted for

equations (45), (46) and (47).

16
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51.3.4 Radial Motion of the Seal Lip

As a separate design problem, the radial motion of the seal lip due

to internal pressure and the rotation of the seal section is considered in

this section. Both problems may be considered irrespective of the leg

configuration and are, therefore, not included as part of the design

consideration of a specific leg.

E_ch of the seals considered is iQaded by a radial force proportional

to the internal pressure and internal seal area. The radial growth of the

seal is greater thaa:Lthat of the adjacent flanges because of its much lower

stiffness. It is assumed that the flanges are rigid compared to the seal and

therefore the seal radial growth maY be taken as the ra_lal;gruw_h 6fjthe:_eal

relative to the flange face. This relative radial motion of the seal llp may

prevent the forming of a good seal and cause leakage. It is probable that

there is some minimum allowable value for which leakage will not occur.

The radial deflection of the seal due to internal pressure is deter-

mlned in the appendix, Sec;[ 51.5._ The analysis leads to an equation which

sets an upper limit on the web length L. When the leg design has been

completed, all of the parameters except the allowable radial deformation, 8 ,
will have been determined. This parameter will be determined from tests an_

experience.

Another cause of relative motion between the seal llp and flange face

is any differential radial growth of the flange faces. A non-uniform

temperature.dlstrlbutlon or the use of dissimilar metals in the flange faces

will result in a differential radial growth of the flange faces. The result

is a moment applled to the seal by forces acting at the seal llps. These

forces are equal to the coefficient of friction times the normal sealing force, R_.
Therefore, as the differential radial growth of the flange faces increases, s

the forces required to twist the seal increase and a point is reached where

the frictional couple is unable to further twist the seal. At this point the

seal llp must slip on the flange face and leakage may occur.

The sequence of design calculations assumes design of the seal leg

prior to the web. Therefore, in designing the web the rotational rigidity

of the seal is considered. Having calculated the differential radial growth

of the flanges and dete_,_ined the maximum allowable relative motion between

the seal lip and flange face from tests and experience, the differential

radial motion of the seal lips, Z_SD, may then be calculated. Z_5D must be at

least as large as the difference between the differential radial growth of the

_langes and the maximum relative motion between the seal lip and flange face.
Then the desired total area moment of the seal section may be calculated from

equation (63)of the appendix, Section 51.5.6.

1'7

51-14



I c = 4_RsHR2r22/ESD (63)

This is the sumof the area momentsof the seal legs and web. As I c varies
as the square of the web length, L, it maybe possible to achieve the desired
I c by only verifying L.

The maximumbending stress due to the applied couple is a circum-
ferential stress and the maximumis at the upper and lower seal surfaces,
_HR•

om = ESD/2r 2 (62)

Other design approaches are possible using the equations in the

appendix, Section 51.5.6.

18
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51.3.5 Seal with Straight Leg of Constant Width Seating on Flange Face

With Circumferential Waviness

In all of the seal leg analyses the flange face has been assumed

perfectly flat. This is never the case, but may be closely enough approxi-

mated to be a reasonable assumption. In order to validate this assumption

the effect of surface irregularities must be investigated. As an analysis

of a general irregularity is difficult and may not be of greatest interest

a simplified model was chosen.

The surface irregularity chosen is a groove running radially,whose
cross-section in the circumferential direction is sinusoidal. The mean

depth of the groove does not necessarily coincide with the flange face

surface and the groove depth may be below the flange surface with a hill to

either side,whose peak is above the flange surface.

Flange

Faces

rMean Groove

FIG. 51.7

Cross-section of Flange Recess

View B

The groove is assumed part of a continuous sinusoidal wave (dotted

line) with a cycle length of w. As shown above, the irregularity length is

slightly more than w and blends in with the flat flange face to either side

of w. The analysis of a seal leg of constant width seating on a flat surface

is covered in Section 51.3.1. In this section only the analysis of

the seal leg seating on the irregularity is considered. Whereas in the case

of flat flange faces the restrained height of the seal, HR, is one half the
distance between the flange faces, in the case of an irregularity it is defined

as the axial distance from the axial midpoint of the flange recess to the mean



groove depth. The initial deflection is then given by the samerelation as
for the flat flange face case.

Yl= % " (64)

The coordinates, Fig.51.8 have their origin at the base of the seal leg. The

half depth of the groove is A, Fig. 51.7. The groove shape is A cos(2_z/w).

Y FIG 51.8

COORDINATES FOR S_TUSOIDALLY RESTRAINED SEAL

The analysis of the seal leg and a further description of the

flange surface irregularity are in the appendix, Section 51.5.7. The sealing

force, Rs, and maximum stress at the base of the seal leg, Om, for the

length w are :

R s -- (3p_/8) - (3y_ D/i 3)

AD (2_/w) 3 cos (2_z/w)
+

sinh (4_ _/w) - 2(2_ _/w)

(l-v)2(2nl/w) 2 + (I+v) 2 + (l-v)(3+ V) cosh2(2_/w)_

(78)

% = (3p_ 2 14h 2) + (18y_DI 2 h2) .

(l-v 2) sinh (4_flw) - 2(2_Iw)

51-17

(79)

2O



The first two terms in the above equations are identical to the

equations for the sealing force, equation (4), and stress, equation (3)

for the seal leg on a flat surface in Section 5105.1.

Of particular interest in the above equations is the change in seal-

ing force and stress due to the sinusoidal restraint. This change is given

by the last term in each of the above equations and is a function of the half-

depth of the groove, A, and peak-to-peak circumferential length of the groove,

w. The change in sealing force for a unit half-depth of groove is:

A R s D(2_/w) 3cos (2_Z/w)

---_ = s inh (4_f/w) -2 (2_I/w)

f(l-v )2 (2_/w) 2+(l+v)2+(l-v)(3+v)cosh 2 (2_/w) I

L J

This change in sealing force was calculated for a seal of constant width leg

with a lip, Fig..51.9. The peak of the groove is considered (z=0) and the

dimensions are those of case 2. Note that in the curve the half-groove

depth is given in mils. As w becomes larger the change in sealing force for

a one mil deflection, from a zero mean deflection, is the same as the sealing

force for a one mil end deflection for a constant width seal leg with a lip

seating on a perfectly smooth surface.

If _ and p are zero in equation (78) the change in sealing force
is the total_sealing force. There is then a positive maximum value at x=0

and a negative maximum at x=w/2 , see Fig.51.16 in the appendix. It is

physically impossible to have a negative Rs and this can only be interpreted
qualitatively that the seal leg is not in full contact with the flange face.

This means leakage will occur. To prevent leakage the sealing force must

always be equal to or greater than some minimum value. Assuming that the

initial deflection is just right to give the desired minimum sealing force

it is then possible to use the internal pressure to force the seal leg into

the groove. The pressure must be large enough to give a zero change in

sealing force in the bottom of the groove.

p = sa Rs/3£

The curve in Fig. 51.9 is based on the dimensions for case 2 and

if in addition w is taken equal to the leg length, _ (.15 inches) and A is

taken as one tenth of y£, (.15 mils) the pressure may be calculated using the

above equation.The pressure is I0,000 psi, which is more than the expected

maximum value of the internal pressure (6000 psi). However, if w is ten

times the leg length the pressure required is only 120 psi. The pressure

increases linearly as A increases and exponentially as w decreases. It may

be concluded that it is extremely difficult to make the seal leg comply with

deep grooves with a small peak-to-peak length.

51_ 18
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3_6 Summary of Seal Characteristics

Pressure energized seals may be grouped according to the shape of

the seal leg. Three major types have been considered.

I. Seal with Straight Leg of Constant Width

Section 51.3oi

2. Seal with Straight Leg of Linearly Varying Width

Section 51.3_2

3. Seal with Straight Leg of Constant Width Without Lip

Section 51.3o3

The seal web is usually a ring which is much stiffer than the seal leg. There-

fore, the seal legs and the web have been considered separately.

Of particular importance in the design of pressure energized seals

is the sealing force obtained as a function of the internal pressure. Also,

the maximum stress in the seal leg is important. Both of these parameters

have been calculated as a function of pressure for the three types of seal

legs. The results are included in Sec. 51o5.9 in the form of curves for

each type of seal leg and are summarized in this section. Typical seal

dimensions were chosen. Most of the dimensions for the three types of seals

considered are identical and the others are equivalent. This makes it

possible to compare the seal leg characteristics directly.

The curves of sealing force versus pressure, Fig. 51o10 show that

the slopes of the constant width seal legs are the same with or without the

lip and are steeper than that for the tapered leg. Also, from Fig. 51.25

it is seen that the slope of the curve for a tapered leg is a function of

the taper. The curves also show that the initial sealing force (p = 0 psi)

is higher for the tapered leg and a function of the taper. The ability to

vary the initial sealing force and slope of the curve in the case of a seal

with a tapered leg is a desirable factor in seal design. Another factor in

favor of the tapered leg is that the stresses are lower, Fig. 51_i0.

The seal web is primarily a structural member and does not directly

affect the sealing properties of the seal. However, the sealing properties

are indirectly affected. The web must be sufficiently rigid to limit the

radial displacement of the seal lip when pressure is applied. Excessive

radial motion of the seal lip relative to the flange face may cause leakage.

Also, the web must not be too rigid so that the seal may rotate and allow

for differential radial motion of the flange faces without slippage. If the

seal is stiff in rotation of its cross-section the frictional couple from the

flange faces will not be large enough to rotate the seal and the seal lip

must slide on the flange face. This slippage may cause leakage.

The radial growth of a pressure energized seal as a function of

internal pressure and inside radius is given in Fig. 51_120 The seal leg

configuration and dimensions of case 2 were used. The web axial length was

taken as one_°half the leg length and the web thickness was calculated based

51= 20
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on an allowable hoop stress of 80,000 psi. For an internal pressure of

6000 psi the web thickness becomes very large for larger radii. At these

pressures and radii a better design may be to use a small web thickness and

have the flange recess support the seal radially. A very wide seal web could

also be used with flat flange faces so that the web is a spacer between the

flange faces and the bolts pass through the web.

51-24



51.4 Conclusions

A pressure-energized static seal may be chosen and designed using the

formulas and procedures in this section. The desired sealing-force char-

acteristics and gross flange deformation must be known. These are determined

fro_a consideration of the flange face surface and seal lip coating, and an

analysis of the complete flanged joint and pipe. The type of seal leg is

chosen by making a comparison of the seal leg characteristics with the re-

quired characteristics. Then the seal leg and web are detailed using the
design formulas given in this section.

The seal leg with a linearly varying thickness and a lip on the sealing

end is the best design of those considered. This is due to the ability to

change the slope of the sealing-force-versus-pressure curve by changing the

leg taper. The uniform-thickness seal leg with a lip on t'he end is a special

case of the tapered leg. The other case considered, uniform-thickness leg

without a lip on the sealing end, has no advantages in its sealing-force

characteristics and has less advantageous stress characteristics.

The radial motion of the seal lip may be a cause of leakage. From

a consideration of the flange face and seal coating material_an allowable

maximum radial motion of the seal lip relative to the flange face is deter-

mined. The seal web dimensions may then be chosen to limit the radial seal

growth due to internal pressure. If the web dimensions become too large, it

may be necessary to limit the radial growth with a back-up ring or the flange

recess. Stiffening the seal web to limit the radial motion due to internal

pressure will limit the seaPs ability to comply with differential radial

growth of the flange faces. In order to prevent relative motion of the seal

lip with respect to the flange face w_e_ there is differential radial growth
of the flange faces, the seal cross-section must rotate about its centroid.

If the seal is too stiff in rotation, the frictional couple applied by the

flange faces will be too small to rotate the seal, and slippage will occur.

Either type of slippage of the seal lip on the flange face is a possible
cause of leakage.

The ability of a seal to comply with a small radial scratch in the

flange surface will depend on the seal lip coating. The increase in internal

pressure needed to maintain the minimum sealing force in the bottom of the

scratch by deforming the seal leg is extremely large even for a scratch whose

width is equal to the length of the seal leg. It is possible to make the

seal leg comply with gradual flange face irregularities such as flange war-

page, but small sharp irregularities require the use of a soft coating on
the seal lip.

The use of beam theory to analyze the seal components that are more

closely approximated by a circular plate or conical shell was justified in

the appendix, Section 51.5.8. Calculations of the sealing force were made

using beam theory, plate theory and shell theory. Curves of the error using

beam theory instead of plate theory show that the error is less than ten per-
cent for a ratio of outside radius to inside radius of 1.2 or less. The

curves of the error using beam theory instead of shell theory show that the

error is less than ten percent for a radius ratio of 1.15 or less and an

angle of 15 degrees or less. The error increases more rapidly as the angle
increases than as the radius ratio increases.
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51_5 Appendix, Analysis of Various Types of Beams Which ar_ Typical of_eal
Cross-sections.

51.5.1 . Straight Uniform Beam Loaded by Internal Pressure and End _estraint

The beam is built-in at one end and has a small leg on the free end

which is supported on the flange face. The internal pressure acts as a

uniformly distributed transverse load. However, even without any internal

pressure the beam is loaded, as the axial recess Between flange faces is less

than the axial length of the seal.

--T --×

/ Rs

The leg (n) is assumed rigid. The rotation of this leg results in a

moment being applied equal to m R sin _. However, this moment is only two

hundredths of the moment due to t_e force R at the built-in end and results

in a deflection at the free end equal to three hundredths of that due to the

force R • Therefore, the moment arm is neglected. The deflection curve is

found b_ combining formulas I and 23 from table III of Ref. 3.

y= p:(2x4+3_2x 2 -5_x3)/48D + Y_ (3_x 2 . x3)12_ 3 (1)

The moment is flexural rigidity, D, times d2y/dx 2.

M= p(4x 2 + _2 . 5_x)/8 + 3y_D (_-x)l_ 3 (2)

The maximum stress is the bending stress at the built-in end.

am =3p_2/4h 2 + 18y_D/_2h 2 (3)

The sealing force is the reactive force R
s

Rs= 3p_/8 - 3y_Dl_ 3. (4)

51-26
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Setting p=o and substituting for D in equation (4), the initial

deflection, y_, required for a specified sealing force may be found as a

function of t_e length-to-thlckness ratio.

Y_= - (4Rs/E) (l-v 2) (_/h) 3 (5)

Then specifying the maximum stress, the length,_, may be determined

as a function of the length to thickness ratio from equation (3).

_ 6-91 E (6)
_LZ

(l-v 2) (_/h)[4a m - ;p(_/h) 2]

If the beam (seal leg) in the unstressed state is at an angle _ to

the flange face, only the sealing force is changed.

Flang e

ace

The end shear, Q_, is given by equation (4).

Rs = Q_/cos

Rs= (3/cos _) (p_/8 - yz D/_ 3)

(7)

(8)

Note that yl is still measured normal to the beam and is positive in
the positive y direction.

Equation (5) changes slightly to:

y_: - (4Rs/E) (I-v 2) _/h) 3 cos (9)

The moment at the built-in end is found from equation (2):

Mo= p_2/8 + 3 _D/_ 2 (10)

51-27
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51.5.2 Linearly Tapered Beam Loaded by Internal Pressure and End Restraint.

This case is identical to the previous case except that h varies

linearly.

h= a + bx

L_ J

(11)

X ---

To find the deflection equation for the above beam requires the

integration of the differential equation of the elastic curve.

D d2y : M

dx 2
(12)

KI=

where

D= E (a + bx) 3 = (a + bx)31d

12 (I _,v2)
(13)

After integration the deflection equation contains three constants.

y= (d/2b 4) [(3ap + bpx- 2bK I) log (a + bx)

+ (a/2) (ap - 2bKl)/(a + bx) - bpx] + K 2 x + K 3 (14)

The constants are determined by applying boundary conditions.

2b4yo/d + 3aplog(l+b_/a) - (blp/2) (6a 2 + 9abl + 2b212)/(a+bl) 2

2b log (l+b_/a) - b2_ (3b_+2a)/(a+b_ 2
(15)

K2= - (dl2b 3) [P
log (a+b_) + ap (3a + 4b_) - 2b (a+2bl) K I

2 (a+b_) 2 ]

51-28
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F

- (d/2b4) ¢(3ap - 2bKl) log (a + b_)K3=
L

+ I [ (2b2_2 - a2) 2bEI + p (a3 - 4a2b_ - 8ab2_2-263_3)]I_17)
2 (a+b_)2 J

The sealing force, Rs, must equal the shear force at x=O.

Rs= - KI (18)

Of particular interest is the sealing force when the internal

pressure is zero.

R I

S

263yo

bd_ (3b_ + 2a)/(a+b_) 2 - 2d log (l+b_/a)

(19)

The bending stress at the built-in end is usually the maximum stress.

However, this is not necessarily true for a tapered beam.

2

m= 3_ (p_ + 2Kl)/(a+b_ ) (20) _

The above equations are too complex to arrive at simple design

formulas. The end defection, y_, required to give the minimum sealing force
when the pressure is zero is found from equation (19).

dREs b_ (2a + 3b_)
yo = - 2 log (i + b_/a

2b 3 (a + b_) 2 (21)

Substituting Yo in equation (15) for K. and substituting K. in
equation (20) for _ gives one equation relati_ a, b and _. Know_ I are p,

m
E, 7, R and o However, the relationship for a, b and _ is complex and

• S m.
nonlznear.

m _p_- 2R(_ + b_)2 s

+ P (a+b_) 2 (6a 2 + 9ab_ + 2b2_ 2) - 6a log(i+ b_/a)

b[(b_a+b_)2 (2a + 3b_) 2 log (i + b_/a)]

51-29
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By choosing two of the three variables, it is possible to solve for

the third. The leg thickness at the sealing end may be chosen smaller than

that at the web end, and just large enough to prevent local overstressing and

maintain manufacturability. Choosing the leg thickness at the web, h_ end

eliminates the natural logarithm terms from the terms involving the dependent

variable and results in an equation relating b and _ that is more tractable.

Also, a second simple relationship between b and _ is obtained.

b = (h_ - a)l_ (23)

The two equations for b and _ may be solved simultaneously. If the

values of b and _ so obtained are unreasonable, other values of a and h_
should be chosen.

If the seal leg is at an angle _ to the flange face, R in equations

(21) and (23) is replaced by Rs cos _. This means Rs is stil_ an axial

force with a component normal to the beam equal to Rs cos _. The end

deflection Yo is still defined as normal to the beam°



5105o3 Straight Uniform Beam Loaded by Internal Pressure and Moving

End Restraint

This case is similar to the case discussed in Section 51_5.1

except that there is no lip at the sealing end of the seal leg. The seal
section consists of a thick web with two constant thickness seal legs. The

rI

FIGURE 51.13 Cross-section of Seal and Flange Recess

flange faces may clamp directly on the web or be recessed and clamp only on

the seal legs. All of the seal designs considered have this option. If the

web is clamped by the flanges, the web load can only be determined by an

analysis of the total flange joint. This case will not be covered in this
section and it is here assumed that the seal sits in a recess. Therefore,

the web analyses of the following sections are applicable.

The seal leg is analyzed as a built in beam at a small angle _ to the

flange face. The leg is loaded by the internal pressure, p, and an initial

deflection normal to the leg, Y2 • As shown in the diagram below, the seal

leg length, (_- _i ) is in simple compression due to the internal pressure
load and does not affect the leg length _i. An equilibrium diagram of the

to _i_length shows that the end shears and moments must be zero. There-

fore, there is no end moment on the seal leg, _i' and the end shear is only

the sealing force R s acting at the distance _i" This point of contact moves

toward the seal web as the restrained height, HR, is decreased or the

pressure increased.



--°--I_-

k

I
I

_ _ P _ I f Flange

FIG. 5i. I4

Cross-section of Seal Showing Loaded Seal Leg

The initial deflection, y_, is the deflection normal to the beam

when the pressure is zero. The corresponding active beam length is desig-

nated _ . Defining the distance k as the distance from the midpoint of the

axial w_b length to the flange side of the seal leg, the leg deflection at

_o is:

Y2 -- (HR-k " _o sin _) I cos (24)

Likewise the deflection of the instantaneous end point of the active

beam length is:

Yi = (HR-k " _i sin @) / cos

Differentiating the equation for the elastic curve of a uniform

beam gives a relation between the fourth derivative and uniform pressure

load.

D d4Y =
P

dx 4
(25)

Integration of this equation gives four constants which are evaluated

from the following boundary conditions:

51-32
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y u 0 at x=0

dy= 0 atx=0
dx

Y = Yi at x = _i

(26)

dy
= - tan _ at x = Jgidx

Note: 4 is a small angle and the small angle approximations for the

trigonometric functions are made later in the analysis. If 4 is large the

effective length of the seal leg,_i, will not vary much as the end deflection

or internal pressure are changed and the analyses of sections 51.5.1 and

51.5.2 are applicable.

The deflection equation for the seal leg is:

,= x4-

3+ 2%-k) I(P__cos4) - (tan 4)/L x (27)

As mentioned above, the section of leg _ to _4 has no end moment,

and the end moment at_ i on the remainder of the leg is zero. This additional

boundary condition is:

M = D d2y = 0 at x li
dx 2

(28)

Using this condition on equation (27) gives the following equation in 2i:

6Eh 3 (HR-k)

._i4 + 2Eh3tan 4, _i " 2) = 0 (29)
p(l-_ 2) p(I-v cos 4

When p = 0 in equation (29) it may be solved directly for _o"

'_o ffi3(HR-k)/sin 4 (30)

51-33
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Substituting for _ in equation (24) allows solving explicitly for cos
" O •

cos _ = -2(HR-k)/y _ (31)

Note this puts a restriction on HR, k and y_.

i 2(_R-k)/YZ I___1

The equation for the maximum bending stress at the built in end is:

P_ 3Eh(H R-k)

o i = 2h 2 + _.2(l_v2)cos

2Eli tan

(32)

(33) .

The subscript 'i' is used to denote the stress for any pressure p, not

necessarily the maximum pressure. The corresponding active leg length is

_i" When reference is made to the maximum stress corresponding to the
I

maximum pressure, the subscript m is used. As this latter stress, Om, is

the largest, it is the stress for which an allowable maximum is specified.

By using equation (29), the pressure term may be eliminated from

equation (33).

3Eh tan _ _ ht_vE..,HR_k,
= - +

0 i li(l_v2) _2(i_v2) cos (34)

From equation (31) the sine and tangent of @ may be determined

/ ......................,/sin # = Yi2 _ 4(HR-k) 2 Y_

tan _ _y 2 4(HR_k )
2 _

_- . / 2 (HR-k)

(35)

Substituting these in equation (34) gives:

i

/y_ 4 (HR-k) 2'3Eh 2 _ 3Eh y]_

2_i (l-v 2) (HR-k) 2i2 (l-v 2)

(36)

51-34
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Returning to equation (29) and combining it with equation

a quadratic equation in _i z is obtained.

(33)

4 2 _ ih2 2Eh 3 (HR-k)
- - = 0 (37)

i 3p _i2 p(l-v 2) cos

Using the quadratic formula gives the solution for_i 2. The minus sign is

dropped because the radical is larger than the first term and a negative

value of _i gives imaginary values for _i'

o +/ 2Eh3 (HR_k) 'ih2 0 i2h 4 + 2)_i2 - _P 9p---_ p(I-v cos

Then the solution for fi must be plus so the negative root is again dis-

carded.

.....7+j-- i+
18pE (HR-k)

2
h _i(l-v2)cos @

(38)

In equation (A-15) the following quantitative relations are noted when the

maximum value of pressure, Pm' is used.

and

18pinE (HR-k)

h o 2(l-v2) cos {_
m

(39)

horn 2(l-v 2) cos {_

51_35



For example, if the following typical values are used for the parameters,

E = 30 x 106 psi

HR = .05 inch
h = .01 inch

k = .04 inch

Pm = 6000 psi
o = 60,000 psim
v = .3

= 18°

for steel

this is maximumpressure
this is maximumallowable strees
for steel

then

i/ 18PmE(HR-k)
h am2(l-v2) cos

= 33.1

Therefore, equation (38) reduces to the following:

4/ 2E(H R -k)
= h (40)

m _ hPm(l_v2) cos

Substituting for cos _ from equation (31) gives:

/_ -E y_ (41)

_m = h V hPm(l_v 2)

The value of _m given by equation (41) corresponds to the maximum pressure
_nd iS the minlmum active leg length.

The healing force, Rs, at length _i is:

P_i Eh3(H R -k) Eh3tan _ (42)
R = +

s 2 cos @ _i3(l_v2)cos2@ 2_i2(l_v2)cos

51-36
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Solving equation (29) for p and substituting in the above equation, and

also substituting for the trigonometric functions of _ give the following

equation for R .
S

J4¥(HR'E) + _i
R ffi (43)

s s213( R-k)2 (l-v21

For p ffi0, equation (30) is used to reduce equation (43).

R° ffi 216 y_(l-v 2) (HR-k)4
(44)

R is the sealing force due to the clamping action of the flange faces.
O

Equation (44) may be solved for h explicitly assuming a value of

R o is specified for the particular application.

h 3 ffi
216(I-v 2) Y_Ro(HR-k)4

E Iyl 2 - 4(HR-k)2 _ 3/2

(45)

Substituting in equation (41) for h3: °

(HR-k) 216 y_ 2Ro/Pm

"_m ffi" _y 2- 4(HR_k)2 _ 3/8

(46)

The seal leg design assumes prior knowledge of the material

properties, E and ¥, the minimum sealing force, Ro, and allowable stress,
o m" The value of a m is not explicitly used, but the derivation of

equation (41) does depend on the value of #m being in a certain range.

With these parameters known, the equations in this section may be used to

determine the leg geometry.

Assume values for HR, k and y_ and calculate the active leg length

for zero pressure (see equation below)-and for maximum pressure (equation

46). Calculate the seal leg thickness (equation 45). Revise the values

3 (HR-k)

_ y 2_4(HR_E) 2 ' (47)
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of HR, k and y_ until reasonable design values of _ , _ and h are obtained.
If this method does not converge sufficiently well _t m_y be necesssry to

select all the geometric parameters and Just make check calculations to

determine whether the sealing force (equation 44) and allowable stress

(equation 36) are within the required limits.

51_38
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51.5.4 Web Design Formulas.

The loads on the seal web are the internal pressure and shears and

moments from the seal legs.

T
L

i _,
k--t-4

r3 From Centerline

The shears will not result in high enough compressive stresses to be

concerned about. The ratio of web thickness t to the mean radius r3 is very
small. Therefore, the web section may be analyzed as a beam of length L with

equal and opposite moments on each end and a plane of symmetry at L/2. The

bending stresses at the plane of symmetry are found from beam theory.

a= 6 M / t2
o (48)

The maximum stress in the leg is given by an equivalent formula where

t is h. Therefore, the first requirement is that t_h the leg thickness
at the built-in end. o'

The second requirement for the web design is that the membrane stress

is within the allowable. The minimum value of t may be calcu_ted.

t= p r3 /am (49)

The larger value of t is chosen. This is a conservative valve, as the

whole radial pressure load is assumed to be taken by the web. For a more

detailed analysis, see Section 51.5.5. The determination of L is also des-
cribed in that section.



51.5.5 Radial Deflection of Seal Due to Internal Pressure.

The radial deflection of the seal is important as any radial move-

ment of the sealing llp relative to the flange face may disturb the seal and

cause leakage. Relative radial motion of the sealing lip is always present.

However, there may be a tolerable amount for which it is possible to design.

r, ''.

_--+ 6r

• h

(IJ

J

1L!

Lz

p

[
L

l
Due to symmetry, only half the seal cross section is considered.

Rings (I) and (2) are assumed simple rings. Because ring (i) is radially

stiffer than ring (2) it will carry some of the pressure load on ring (2).

The redistributed pressure loads are represented as Pl and P2 and are related
to p by the equation.

Plrl LI + P2 r2 L2: = P(rl LI + r2 L2) (50)

The strains in both rings must be equal:

Pl /(r3- rl)= P2 /(r3-r2) (51)

Equations (50) and (51) are solved for p and p^ . Using the

value of Pl so found, the radial deflection of t_e sedlZlip, Br, is found.

8_=(Prl2/E)(rlLl+r2L2)/[rlLl(r3-r I) + r2 L2(r3-r2) ] (52)

The following relations are noted on the diagram.

LI= h (of the leg at the web)

r2= L + r1

r3= r 2 + t

L = 2(L I + L2)

Substituting these relations in equation (52):

51=40
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r

2

Pr I

E[t + rlh_/(Lrl/2 + L2_)]

(54)

In equation (54)

2

Pr I
5 =
r E (t + 2hl/L)

Lrl/2>>L2_ and the equation may be reduced:

(55)

Equation (55) may be used to determine the web length, L. Once the
seal leg has been designed it remains only to specify 5 . Allowable values

for 5 r will be determined from tests and experience, r

(Prl2/E - t)L= 2h_/ 8r (56)
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51.5.6 Rotation of Seal Section Due to a m Applied Moment.

Differential radial expansion of the flange faces as the result of

non-unlform temperature or dissimilar metals results in a moment being

applied to the seal in the plane of the seal section. The larger the

differential expansion the larger will be the moment and the more likely is

sliding to occur between the seal llp and flange face. A small amount of

sliding is probably tolerable, but a point may be reached where leakage

occurs. It seems desirable to design the seal to allow a small amount of

differential radial growth of the flange faces without sliding of the seal

llp.

Consider a seal of arbitrary section to which a couple is applied.

The forces are radial in direction, tangent to the flange face and applied at

the seal lip.

The applied moment is 2HRF where F is the friction force between the

seal lip and flange face. The f_ictlon force is equal to the sealing force

times the coefficient of friction.

F= _ R (57)s

The problem of a ring subjected to an applied moment is solved in

section 138 of Ref. l . The angle of rotation of the seal section and the

maximum bending stress are given.

_= 2_Rs_ r22/E Ic (58)

a = 2_R E}L2r2/I
m s c (59)

The differential radial motions of the sealing lips is given for

small angles of rotation.

5D= 2 HR¢ : (60)
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Substituting for _ gives.

5D= 4_ RsHR2r22/E Ic (61)

Combining equations (59) and (61),

Om = E 5D/2 r 2 (62)

Equation (62) allows quick checking of the maximum bending stress

based on the value of 8D chosen. The desired value of I may be calculated
from equation (61) c

Ic= 4_RsHR2r2Z/ESD " (63)

I is the sum of the area moment for the legs and the web. It is

assumed _n equation (63) that the leg has been designed. Therefore, the

value of I calculated will effect only the web design.
c
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51o5.7 Straight Uniform Beam Loaded by Internal Pressure and Sinusoidal

End Restraint.

All of the previous analys_s have assumed a perfectly smooth flange

face surface. This idealization is never met in practice. There are always

irregularities in the surface. Although there is nothing regular about the

surface imperfections a simplified model is chosen for the analysis. The
choice of model is based on the fact that a radial scratch offers the best

leakage path. A circular scratch may not offer any leakage path.

The leakage path chosen is a radial groove in the flange face with
a sinusoidal cross-sectlon. Part of the metal is assumed raised above the

flange face. As shown below the cross-section is a deep valley between two

f _ r ,

//2 / /

/ LL I

_ Z

cMean Depth

FIG. 51.15

Circumferential Cut Through a Radial Groove

2_z
hills. The shape is assumed sinusoidal, A cos w It is further assumed

that the single groove is part of a slnusoidal surface waviness as shown by

the dotted lines.

The pressure-energized seal considered has a "U" shaped cross-

section and straight legs of uniform thickness. Just as the seal leg

analyzed in Section 51.5.1, the sealing edge Ks a small lip which is

assumed rigid. The web is also assumed rigid and therefore, the seal leg acts

as if built in at the web end and simply supported at the lip end. The

loading of the leg is due to the restraint of the flanges and internal press-

ure.

Of particular interest in this case is the relationship between the

pressure load and the sealing force in the bottom of the groove. Compared

to a perfectly flat surface how much more pressure is needed to maintain an

adequate sealing force? Also, how much more preloading by the flanges is

necessary and what is the increase in the seal leg stress?

The ratio of the outside seal diameter to inside diameter is assumed

close enough to one so that the seal leg, which is a flat ring plate, may

be analyzed as a continuous rectangular plate. Then as the pressure loading
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is uniform and the groove in the flange face is assumed part of a continuous

sinusoldal surface waviness, it is possible to select a length w of the plate

for analysis. In the hypothetical case of a continuous wavy surface this

length w is one cycle of the wave and in the physical model the length w is

the one groove of particular interest. The analysis for the seal leg con-

tacting a flat surface is in Section 51.5.1. In this analysis only the

sinusoi_al length w Is considered.

The length w is a rectangular plate built in at one end and simply

supported on a coslne-wave shaped support on the other end. This is one

cycle of a cosine-wave which is assumed to repeat to either side of the

plate. Therefore, the boundary conditions may be determined from symmetry.

!

FIG. 51.16

SINUSOIDALLY RESTRAINED PLATE

The boundary conditions along the z = constant edges are:

z =0 orw

z L bz 3 bzbx 2
--0

The boundary conditions along the x = constant edges are:
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x=0

y = y_ - A cos(2_z/w)

=0

Note the mean edge deflection, yl, is shown in a positive sense. Actually

the seal leg is given an initial deflection in the negative y direction so

that an initial sealing force, Rs, is obtained. The initial deflection is

calculated from the following relation:

y_[ = - (HF-HR) (64)

HF is the unrestrained axial half-length of the seal and HR is the restrained

half-length. For a perfectly flat flange face, HR was measured from the axial
mld-polnt of the seal to the flange face. However, in the case of a grooved

flange surface HR is measured from the axial mid-point of the seal to the
mean groove depth. The mean groove depth is not necessarily at the same level

as the flange face.

HR

l,,j/
Flange Face -J

FIG. 51.17

RESTRAINT OF SEAL DUE TO FLANGE RECESS

The deflection equation for the plate is determined in two parts.

It is assumed that the deflections are small and the principle of super-

position applies. First the deflection equation for a built-in, simply

supported, and uniformly loaded continuous plate is determined. Then the

deflection for a built-in, sinusoidally restrained and continuous beam is

determined. The two solutions are added to give the total deflection

equation.

_ Connect ionCenter Line

I

I

mid-point
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Neglecting the sinusoldal edge restraint reduces the plate problem

to that of a wide beam (in the z direction) loaded transversely.

/

//

/

P

7
Y

FIG. 51.18

Uniformly Loaded Plate with Constant Edge Restraint

The deflection equation for this configuration is equation (i).

Yl -- p(2x4"5_x3+312x2) /48D+y_ (3_x2x 3) /2_ 3 (65)

This solution satisfies the Lagrange plate equation

A 4 y=p/D (66)

and the boundary conditions at z = 0 and w and x = O. At x = J_the moment

boundary condition is met, but the deflection boundary condition is only

partially met. That is, at x =_, Yl = Y_'

To complete the solution a deflection equation is determined that

satisfies the homogeneous Lagrange plate equation, A4y = O, and all the

boundary conditions except the deflection at x _ _. In order that the sum

of the two deflection equations satisfy the boundary conditions the boundary

condition for the second solution at x =_ must be Y2 = -A cos (2_z/w).

A solution is assumed of the form:

Y2 = -A cos(2_z/w)Y(x) (67)

where Y(x) is a function of x only. This function satisfies the

boundary conditions at z = 0 and w. The boundary conditions at x = 0 and

are met by Y2 by making Y(x) meet the following conditions:

x=O

Y x) = = o

Y'(x)= I
51-47
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2y2 __2]

Mx = -D [. _-_ +V, z J = 0

which is upon substitution:

_2y 2y

---_- v(2_lw) --0
(70)

Substituting yp (equation 67) in the Lagrange equation results in a fourth

order differential equation for Y.

_x---_ "2_4Y _w 2 _ <_14 y = 0 (71)

The general solution to this equation is given on page 114 of Ref. 2.

Y = K 4 sinh(2_x/w) + K5(2_x/w ) slnh(2_x/w)

+ K 6 cosh(2_x/w) + K7(2_x/w) cosh(2_cx/w)

(72)

Applying boundary conditions the constants are evaluated.

K 6 = 0

K 7 = -K 4

K4=
2 cosh(2_/w) + (I- V) (2_/w)sinh(2_/w)

sinh(4_/w) - 2(2_I/w)
(73)

K5 (lqvJsinh(2_/w) + (l-v)(2_I/w)cosh(2x_/w)= sinh(4_/w) - 2(2_/w)
(74)

Substituting in equation (72) for Y and (67) for Y2:

{K5 (2 _x/w) s inh (2_X/W) + K4_s inh (2_x/w)

Y2 = -A cos (2_z/w) _(2_x/w) cosh(2_x/w_)_

(75)
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The complete solution for y is:

y = yl+Y2
(76)

where Yl is given by equation (65) and Y2 by equation (75). The edge

load, R s, is equal to, but opposite in sign, to the total edge shear at
x=_.

R
s

F3

"-1")=-=x _x_z 2u; x3 + (2-V)
(77)

Substituting for y from equation (76).

R - (3p_/8)-(3y# D/_3)+ AD(2_/w)3c°s(2_z/w)
s s inh (4_/w) -2 (2_/w)

(l- v) 2 (2.i/w) 2+(z+v) 2(z- v) (3+0 cosh 2 (2,_Dw)}

(78)

The maximum stress at the built in end (x=0) is given by:

°
m X=0/"

Upon substituting for Mx this is:

Om _jZ !__ ___
4h 2 (1-¥ 2 )

(79]
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51.5.8 Justification of Beam Analogy

Consideration of the typical dimensions of commonly used static

seals leads to the conclusion that the sealing leg of the seal can be

analyzed as a beam. This simplifies the analysis and makes possible the in-

vestigation of changes in certain parameters, such as leg thickness, which

are difficult to treat in a plate or shell analysis. The accuracy of the

beam analysis is sufficient for design purposes and for analytical studies

of seal performance.

To verify the fact that the beam analogy is adequate, the error

resulting from the use of beam theory to calculate the sealing force for a

seal leg of the flat plate and conical shell type was calculated. The seal-

ing force was chosen because it is the most important parameter in the seal

design. A seal leg of uniform width, with the point of sealing fixed_ was

used in the calculations.
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51,5.8.1 Beam-Plate Analogy

The sealing force is the sum of two terms in both beam and plate

theory. One term is the force due to the initial restraint and the other is

due to the internal pressure. The error resulting from the use of beam

theory is defined as the absolute difference between the force calculated

using plate theory and beam theory divided by the force calculated using plate

theory.

Rs(Plate)- R (Beam) I
e = _ s x i00

Rs(Plate)

(80)

This error is a function of the radius ratio and ratio of initial deflection

to internal pressure. As the initial deflection and internal pressure are

difficult to predict, the error was calculated separately for the case of

initial deflection only and internal pressure only. In this way the error is

a function of radius ratio only.

The sealing force using beam theory is found from the formulas in

Ref. 3. Equation (81) is the term

Rs(Beam) = 3prl(r2/rl-l)/8 (81)

R s (Beam) = -y_m2Eh 3/_4rl 3 (m2- i) (r2/r I- i) 3_ (82)

due to internal pressure and equation (82) is the term due t to initi_l

deflection.

The sealing force due to the initial deflection is also found in

Ref. 3 for a fiat circular plate.

R (Plate)
s

r2 -I +

= -2m_h3y_/_rl3 (m2- I)

-8mr221og(r2/rl)+4r22(re+l) _log(r2/rl) ] _A211(83)2m(r22-rl 2)

r22 (m- I)+r12 (re+l) 9

The sealing force due to the internal pressure is found from the

general solution for the Lagrange plate equation. The solution for a cir-

cular symmetric plate is:

4 Klr21og r+K2r2y = pr /64D + + K 3 log r + K 4 (84)
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The boundary conditions are:

r = r I

r = r2

y--O

+__1 __0
dr 2 mr dr

y--0

dY= 0
dr

(85)

The sealing force is the edge shear at r = r I.

only of

This is a function

3 i -_dr
Rs _-D_r + r

r=r I

one of the constants of integration, K I. This constant is determined by
applying the boundary conditions to equation (84).

(Plate) = (Prl/8) _(m-l)(r2/rl)6 (Tm-5)(r2/rl)4R s

2 Lt_'m+l)(r2/rl) 2-(m+7)(r2/rl) + (7m+3) + 4

(86)

+(5m- I)_ (r2/rl)

-16(m+l) (r2/r I)

log (r2/rl)

_'l°g(r2/rl)_ _/_-(m-1)(r2/rl )4

2
+2(m+l) (r2/r I) - (3re+l)

-8m(r2/rl) 21og(r2/rl) + 4(m+l)(r2/r I)

(87)

The error in the calculated sealing force due to the initial

deflection resulting from the use of beam theory is found by using equations

(82) and (83) in (80).
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+

£y = i00 - _37"5/(r2/rl-l)_r2/rl )2 - I

2m_r2/r I) 2-i_ -8m(r2/rl) 21og(r2/rl)+4(r2/r I) 2 (re+l)_log(r2/rl)_ 2

2
(rz/rl) (m-l) + m + i

(88)

The error in the calculated sealing force due to the internal pressure

resulting from the use of beam theory is found by using equations (81) and

(87) in (80).

ep = i00- 300 (r2/r I- i) _(m- i) (r2/r i)4+2 (re+l)(r2/rl)

2

- (3re+l)-8m(r2/rl) 21og(r2/rl)

+ 4(re+l) (r2/rl)2 _log(r2/r I -I) (r2/rl)6

2
- (Tm-5)(r2/rl)4-(m+7)(r2/r I) + (7m+3)

(89)

+ 4_(m+l)(r2/rl)2+(5m-l)J (r2/r l) 21og(r2/r I)

- 16(m+1) (r2/r1)2 Ilog(r2/rl)

c and • were calculated for values of the radius ratio from 1.0

to 1.4. _hese results were plotted, Fig. 51.19 and are very closely

approximated by the straight line equations:

c = 51.62 _ -_(l-r2/r I)Y
(90)

: 18.66 (l-r2/r I)
P

Note the error in the calculated sealing force due to the initial deflection

is nearly three times that in the calculated sealing force due to internal

pressure. This does not mean that the error in calculating the sealing

force is the sum of thesetwo errors, but it will be somewhere between the two

Curves. From the curves for sealing force versus internal pressure it is

seen that the sealing force at 6000 psi is approximately six times that at

51-53

$6



51-54 57

7i[?'-;,iiE;q

-4.4-H-i-_

]:|-t--l-uf ,_ki-
__4_2LLt..::!::__

-lJ:d:?t;;:
7 -_....', I

H- _ --

• _H+l-I f k
4 .LL___L_L T_

ill"-_i_i"'---" [ ..i , !7_

:]:LI;_::H:_

.d:[:]_fi-L:LlSjj

ii!h 13tt 
71:1:1::Ii:i:[-:II
d:t:.l:i 
rF._i2_]::r__

I_I..LI_Li. L..L.!A-
113 ! I_LJ_L.I_ !
!I:]]I-+I-IH
__L]]]LI_LX].
H-l-bl-b IH--I
ij:::i:I:I-I:I:LL!Lt:_;.LI±I._K
!-LLLLt:_tt!:
: :_:]-ki:iiLt
- -i47-r-t--_-i-_-

;]--i---r.7L-]Z',-L-I[
--i LL i..LLi..4_
__L:.._

,i='=i

J t-i_

t:.L_

-- --LJ -

H-- !:i

ii "

It!! :i 'I
I, :q;

L L

--r-r_, ........ i--i _-i.+.li--_-
4--_-.i.,,_-i-I 4-I--
I -;-,- MA.--i-,-
I _ t I i !-T--,

; r-:-7 .... '_ i '

!-i Ti r-t-i-_-

:f4._}if;

LL_L ::i;
_ .._..+- i__l.... 1

.......1l-.k?i-_,

.......I t-T-t_ _

t""!-!- --

P-+--_ ......!"f i t 1i'-- -i--+

........ r--.l--i._-1-.i-'

........._Id-H4
--,--.v---- i .....

--"_"+--+""J_-!_ :i"l "i-A'_'-'_
_1 f _c

........ l,lll

.--F_;-,-7
..... f--l@fd-
..... t_ _i, '-]t
712L_[I_iLZ
_4d_,,_! !_LI_.
..I : I / t i I _:L--ii!tL[_ilflf?:
_t..]_L:L.!_ _-
I7:-i -I -r-i _ _

'-i-11_i I..... ::]-:L:I

. I_2.__ l._Li L.,
i._i!]r_ I

_! .1.L I__'_L.I_L.
_i._i.i]._ _! L

'! _ ! F;

4.._L-_iJ2CF_C_
J. l.i_I..L!._._._.

I.]I ,i'

_T- - _ _"_
.... J i t i!_ -_i---t- -

• . 7

- r. -+,.- -i- . r - I--,!-j ,

..+_+__ I I i

-; --;. -1 ',-i_ LL_

......:FfTFi:

I/?!1





zero psi. An expression for the total error may be found from the two errors

previously calculated and the sealing force ratio.

T

= 6y(lO0+ ep) + 6 ep(lO0+ ey)

(I00+ Ep) + 6(100+ ey)

(91)

Using this formula a set of curves of total error versus pressure for constant

radii ratios were calculated, Fig. 51.20. These curves show a marked de-

crease in the error as the pressure increases. Above 4000 psi the error in

the sealing force is less than ten percent even for a radius ratio as large

as 1.4. For a seal with a seal leg length of .2 inches this means that

beam theory will give answers accurate to within ten percent for internal

radii as small as .5 inches.

51-56



51.5.8.2 Beam-Shell Analogy

The sealing force using beam theory was readily found using the

formulas of Ref. 3, where _ is the cone angle.

2

Rs(Beam ) = 3_p cos _/8

+ Eh3(HF HR) COS _/ _(I - V2)_31 (92)

The sealing force using shell theory is not readily found, and it is not

possible to determine an expression for the error which is a function only

of radius ratio and cone angle. The error is defined like the error in the

beam-plate analogy.

R (Shell) - Rs(Beam)S

E = R (Shell) x I00 (93)
s

The sealing force was calculated, using the following for the parameters:

E = 30 x 106 psi

h = .015 inches

HF - K R = .01

= .15 inches

p = 6000 psi

V= .3

The beam-theory results were easily calculated by hand, using equation (92).

The shell-theory calculations were done on a digital computer, using an

existing computer program° Yhe results were combined and the error calculated

as a function of radius ratio, Fig° 51.21 and cone angle, Fig_ 51.22. Note

that the error increases very rapidly as the cone angle increases, particularly

for angles larger than twenty degrees.

80
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51.5_9 Calculation of Seal Characteristics

A number of different seals were analyzed in this report. In order

to illustrate the characteristics of these seals and obtain a comparison of

these characteristics, typical dimensions were chosen and numerical values

calculated. The action of both seal legs and webs was calculated. These

calculations should be an aid to the designer in selecting a type of seal

and in determing the seal dimensions.
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51.5.9.1 Seal with Constant-Width Leg

Of the various seal legs, this i_ the simplest. It is analyzed using

beam theory in Section 51.5.1. As for all seal legs, the sealing force is of

primary importance and the maximum stress of secondary importance. The seal-

ing force was calculated using equation (4). The following parameters were

used:

Curve I 2 3

E psi 30x106 30x106 30x106

h inches .029 .0251 .0224

inches .15 .15 .15

y_inches - .001 -.0015 -.002

v .3 .3 .3

The sealing-force-versus-pressure curves are straight lines, Fig, 51.23.

Note that slopes of all three lines are alike and that there is a greater than

six-fold increase in sealing force from zero to 6000 psi pressure, From

equation (4), it is seen that the slope is proportional to the length of the

seal leg. Cutting the leg length in half will decrease the ratio of sealing

force at 6000 psi to that at zero psi to slightly over three. Adjustment of

the slope of the curve is possible within reasonable limits. To achieve a desired slop(

may necessitate an impractically long or short seal leg. For this reason the

other seal designs should be considered.

The curves for maximum stress as a function of internal pressure

were calculated from equation (3). Note that seal-leg dimensions were chosen

to give a complete stress reversal as the pressure increases from zero to

6000 psi and to give specified end stresses. This design method optimizes

the use of the material for a particular maximum allowable stress.







51.5.9.2 Seal with Leg of Linearly Varying Thickness

The linearly tapered seal leg was analyzed in Section 51.5.2. The

equations, although more complex than the previous case, are amenable to hand

calculations. Note that once the geometric parameters have been substituted

in the equations, they are linear functions of the end restraint and internal

pressure.

Four cases were chosen, each with a different taper but all with

the same mean width. The case with zero taper is case 2 of the previous

section. Only the amount of taper was varied in order to highlight this

effect. One of the cases has a reverse taper.

Curve 2 4 5 6

a inch ,0251 .0301 .0201 o0151

b inch 0 -.0667 .0667 .1333

E psi 30xlO 6 30xlO 6 30xlO 6 30xlO 6

_ inch .15 .15 .15 .15

y_inch -.0015 -.0015 -.0015 -.0015

v .3 .3 ,3 .3

The beam is given by equation (Ii).

h = a + bx (ii)

The sealing force as a function of initial deflection and internal

pressure is given by equation (18) of Section 51.5.2. Note that as the amount

of taper is increased, with the web end of the leg becoming thicker_ the

sealing-force curve becomes more flat. The ratio of sealing force at 6000 psi

to the sealing force at 0 psi is 4.3 for curve 6, with maximum taper, compared

to a ratio of 6.8 for curve 2, without taper.

The slope of the curve is determined by the coefficient of the

pressure term. By setting y =0 in equation (18) and grouping the parameters,
the following equation is obtained:

Rs 2(b_a_ 9(b_a)2 + 6(b_a)_ 6......I 1 + b--_a)2log (1 + b--_a ) (94)

P_ 4(b--_a}(I + b-_a)2 log ;I + _--_a)- 6(b--b_a)3 - 4(b--_a)2

Note that b_/a is the change in leg width divided by the leg width at the

lip end. This is related to the ratio of the leg width at the web end to

that at the lip end by the relation:

_ b_+a = b___+ I (95)
h(lip) a a
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Therefore, the slope of the line R versus p is a function of the leg width

ratio and leg length. Rs/P_is pl_tted as a function of leg width ratio on
Fig. 51.26. This curve snows that the slope of the R versus p curve decreases

as the leg width ratio is increased and the leg length is decreased.

The curve of maximum stress as a function of internal pressure,

Fig. 51.2_ shows that the maximum stress decreases as the web end width is
increased relative to the lip end width. This adds another reason for having

a tapered seal leg whose width gets smaller toward the lip end.
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51.5.9.3 Seal Without Lip

The seal description and analysis are covered in Sections 51.3.3 and

51_5.3 of this report. This seal behaves differently from the two seals

already discussed in that the point ot sealing moves as the internal pressure

and initial deflection are increased. The seal is at a very small _angle to

the flange face and as it is forced against the flange face part of the leg

at the free end lays flat along the flange face. This part is in simplel

compression and has no effect on the remaining length of leg which is

referred to as the active leg length.

This extra variable complicates the computations and makes it

difficult to choose the parameters so as to obtain an exact comparison with

the seal geometries for the previous two cases. Because the leg length

decreases with increasing pressure a length slightly larger than that used for

the previous cases was chosen. The material properties chosen are the

same. The maximum allowable stresses are the same, but unlike the case of

a uniform width leg with a lip, only the stresses on one end of the pressure

scale approach these values.

Curve 7 8 9

E psi 30x106 30x106 30x106

4 inch .2 .2 .2

R Ib/in 60 80 I00
o

.3 .3 .3
v

,o psi 60,000 80,000 I00,000
o

The calculated seal leg width for all three cases is .0346 inches and the

end restraint is:

Case y_ inches

7 .0014

8 .0019

9 _.0023

The calculated value of the active leg length as a function of internal

pressure is given by Fig. 51.28. Note that the change in active leg

length decreases as the initial deflection increases.

The sealing force versus internal pressure curves, Fig. 51.29

are similar to those for a leg of uniform width with a llp. Curve 2 has

been added to show the similarity. The curves are nearly linear and of

approximately the same slope as curve 2.
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The stress-versus-pressure curves, Fig. 51.30_show that the maximum

stress is equal to the allowable for the respective curve at zero pressure.

As in the case of the other seal legs, the stress decreases as the pressure

increases. However, unlike the other seal legs, the stres_ does not reverse

itself.

The calculations are based on the equations derived in Section 51.5.3

of this report. Starting with equation (34) and substituting _ and cos
o

from equations (30) and (31) respectively gives:

o = 2Ehtan2_ /[3y_ (l-v2) ]: (96)
o _i

Combining equations (30) and (31)

tan _ = - 3y_/2_ ° (97)

Substituting in equation (96)

2 o
Y_ = 2(I-v2)_O o/3Eh (98)

The sealing force, R , for zero internal pressure is obtained by setting
p = 0 in equation (42). _hen using equations (31) and (97) the equation for

R is:
o

Ro =- Eh3y_ / [4_o 3(l-v2) c°s _] (99)

From equation (97) the cos I_ is:

cos _ = 2_ ° Y_ 2 + 4 _o 2 (I00)

Substituting for cos _ and y_ in equation (99) from equations (100) and (98)
respectively gives the following equation for h.

2 2 2/E2 h 2 2 2
h4 + _o o - 36 R _ 2/o = 0 (i01)

O O O O

Values of v, _o' Oo, E, and R were chosen and h was calculated from equation

(I01). Then y_ was calculate_ from equation (98).

Substituting for cos _ and tan _ in equation (29) from equations

(31) and (97) respectively gives;
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The curve of active leg length versus pressure was calculated from this

equation.

Using equations (35) and (97) in equation (43) gives:

From equation (97):

2 2"sin _ = -3 9y_ + 4 (104)

and the equation for R is:
s

Rs = - 3Eh3y_ _o/3- (l-v2)gi 3 2+4go2 (105)

This equation was used to calculate the sealing force as a function of active

leg length. The results were related to the pressure by the use of the cal-

culations based on equation (i02).

The stress equation was found by using equations (31) and (97)

in equation (34).

The stress calculations were made using this equation and related to the

pressure by equation (102).

For all three cases the angle between the seal leg and flange face

is very small ( .6° , .8° and 1.0 ° respectively for cases 7, 8 and 9). This

was true for all the combinations of parameters tried unless _ was specifical-

ly set larger.

The mean active length for the three cases is slightly higher than

the leg length for the previous cases. Another calculation was made

specifying the mean length equal to the length of the seal leg of uniform

width with a lip, case 2. The parameters used were:

6
E = 30x10 psi

h = .0251 inch

f(mean) = .15 inch

= .0015 inch
V = .3 51-74
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The equations for the calculations were also derived from those in Section

51.5.3 of this report in a similar manner as those derived for the _receding
calculations. The results have been combined in one figure, Fig. 51.31.

Another set of equations were derived in which the stress at 6000 psi

internal pressure was made of equal m_gnltude to that at zero psi. Calcu-

lations were made specifying E (30xlO v psi), v (.3), R ° (_oX10-3), and _@o"

The resulting values of the active leg length at zero pressure, _o' were too

large, and the calculations were not carried further.

o psi _D inch h, inchO

60,000 .529 .0563

80,000 .7054 .0651

I00,000 .8818 .0727
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51.5.9.4 Radial Motion of Seal Lip

The radial motion of the seal lip due to internal pressure and

differential radial growth of the flange faces was analyzed in Sections

51.5_5 and 51.5.6. Equation (55) of Section 51.5.5 gives the radial growth

as a function of internal pressure. Using this equation, calculations based

on the seal-leg dimensions used in case 2 were made. The web dimensions used

were determined from equation (49) of Section 51.5.4_and L was chosen as 1/2 of

_. This gave an expression for _ as follows:
r

8
r

2
Pr I

<"rl+_" )

E + 4h

_m 1

p 2

The calculations based on this equation are given in Fig. 51.12. Included

is a curve of web thickness, t, as a function of inside radius, rl, for a
constant pressure of 6000 psi. Note that the other curves in the figures

are based on the value of t calculated from equation (49) of Section 51.5.4.

The differential radial motion of the seal is the maximum displace-

ment the seal can accommodate without having slippage between the seal lip

and flange face. That is, for a differential radial growth of the flange

faces less than g_, the seal will rotate and the seal lips will move with the
V

flange face without slippage. If the differential radial motion of the

flanges is greater than bD, the seal lips will slide on the flange face and
leakage may result.

Calculations were made using equation (61) of Section 51.5.6 and

equation (49) of Section 51.5.4. I in equation (61) was calculated using

equation (49). The seal-leg dimensions and material properties of case 2

were used. The coefficient of friction used is a mean value for Teflon

taken from the curves in Chapter 12 of Ref. 4. In accordance with the dis-

cussion of Section 51.5_4, the web thickness was not allowed to become less

than the seal-leg thickness. For this reason the curves, Fig. 51.32_were

begun at an inside radius of one inch and the lowest pressure used is 2000

psi. Smaller radii and lower pressures could be considered if necessary.

It is noted that there is a finite gD versus r I curve at zero pressure as
the initial deflection of the seal legs results in a normal force between

the seal lip and flange face which makes it possible to apply a frictional
moment on the seal.

The curves were not continued past a differential radial motion of

.025 inches because the assumption of a small angle of rotation of the seal

does not continue to be valid, and in the case of no internal pressure the

seal lips rotate away from the flange faces when 5_ is greater than .0247
V

inches. The small-aDgle approximation made in the analysis is that the sine

of the angle is equal to the angle in radian measure. The seal lips will

break contact with the flange faces when the angle of rotation becomes so

large that the seal lip-to-lip distance times the cosine of the angle is
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less than the height of the flange-face recess. _en the pressure is zero,

y=0_

and the angle @ is readily determined. For finite pressures y is a function

of the pressure, and the value of @ when (HF+Y)COS@=HR, increases with p.

//IIIII //_< //I I//

/ /// ////// _hz-/7

2(HF+_//

2HR

2 (HF+Y) cos @ < 2 HR

FIG. 51o33

ROTATION OF SEAL CROSS-SECTION

However, the relationship becomes non-linear and more difficult to solve.

For a seal with a I0 inch inside radius, the results of linear theory are

that for 6000 psiSD is .087 inches and for zero psi 5D is .014 inches.

The larger number is not accurate. 5 D for 6000 psi should be lower. How-

ever, the curves do show that not only because of slippage between the seal

lip and flange face, but also because of seal and flange separation leakage

may occur.

The seal rotation also causes additional hoop stresses and may

overstress the seal. A 4.7 inch inside radius seal when subjected to an

internal pressure is stressed in hoop tension to its allowable maximum of

80,000 psi (using dimensions for case 2). If in addition the seal is

subjected to a differential radial motion of .025 inches the additional

hoop stress is 76,800 psi. This is calculated using equation (62) of

Section 51.5.6o

82
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52. HOLLOW METALLIC O-RINGS

by

BoT. Fang

52.0 Summary

Metallic 0-rings have been used extensively as static seals under

extreme temperature and pressure conditions. They are made of metal tubing

formed into rings by welding the two ends together. A spacer or recessed

flange must be used to limit the compression of the O-ring. When the connector

is assembled, the O-ring is squeezed to the desired thickness and also expands

radially so that it is tight against the back-up material provided by the

spacer or the flange. The 0-rlng is often coated with a material such as

Teflon or silver that can flow into the asperities of the flange and make a
leak-tight joint.

There are three basic types of O-rings; the difference in their

construction is evident from the following figure.

Stamda_d Metallic Pressure-Filled Pressure Energized

O-rimg 01ring 0-rlng

FIGURE 52_I Three Cemmon Types of Metallic O-ring

The standard 0-ring is the most common of the three. The sealing force is

derived from the initial compression and maintained by the resiliency of

bhe 0-ring. At high pressures there is the danger that the internal pressure

may become larger than the sealing stress. Furthermore, the high pressure may

cause the 0-ring to buckle. The pressure-filled O-ring is filled with an

inert gas at usually about 600 psi. At high temperature this gas expands

and tightens the seal, while at low temperature it has the reverse effect.

Because of the enclosed gas, the pressure-filled 0-ring dan withstand higher

pressure before buckling would occur. The pressure-energized 0-ring has holes

drilled in the tube wall, and the pressure inside the ring is the same as

the pressure in the system; therefore, the higher the pressure in the system,

the greater is the sealing force.

52-1
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A general elastic analysis of 0-rings is given in Section 52.4. This

is not only a prerequisite to a more general elastic-plastic analysis but also

yields some useful information which is applicable despite the presence of

plastic deformation in the practical application of 0-rings. Among the

conclusions are:

(I) Within the elastic theory, all three types of 0-rings behave

similarly. In particula_they all may have the same pressure-

energizing effect.

(2) The use of a retaining ring or other mechanical back-up is

desirable because it increases the pressure-energizing effect

considerably.

0-rings currently in use are compre_ed to such an extent that large

permanent deformation occurs. Because of the plasticity and large deformation

effec_ a theoretical analysis of the 0-rlng behavior becomes extremely dif-

ficult. Based on very much simplified assumption_ some considerations of the

plastic behavior of 0-rings are given in Section 52.3. The results obtained
include

(I) A conservative estimate of the sealing force.

(2) An estimate of the decrease of the sealing force when the

flanges tend to separate as a result of differential thermal

expansion, external loads, etc.

(3) An estimate of the area of contact between the 0-ring and

the flange.

52.1 Summary of the Result§ of Elastic Analysis of 0-rings

One of the primary requirements of face seals such as metallic O-rings

is to maintain sufficient sealing pressure between the O-ring and the flange

surfaces. In order to find out the variation of sealing pressure with the

bolt load, the internal and external pressure, and so forth, we need to know

the load-deflection relations. The deflection parameters of importance are

the shortening of vertical diameter of the tube 5v and the increase of the

outside diameter of the 0-ring 5H. The elastic load-deflection relations

for the four basic types of loading are obtained in Section 52.4 and are
summarized as follows:

F_Ib/in)

a

! rb'-

- 5H

FIGURE 52.2 Axial Load
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F

v

D

149 -
'0,141 -7= Spring constant of the 0-ring

I + 14.4/_2j

(lla)

F

_H

D

0. 141 ]1 + 14.4/_ 2

8 H

--R(ib/in)

V

2

FIGURE 52.3 Radial Load

R __.

B
v

D

193-o.,99+

R

FIGURE 52.4

r

b4[0_V ,

Ehla

0.318 + 21(I + 141_2)

5H

_ __(ib/in )

v

2

Pressure Load on Half of Cross-Section

D

I + 14/_ 2

T Eh

-_H a2 .636 - I.

I + 14/_ 2

(i16)

(27a)

(27b)

(37a)

(37b)



I

I
FIGURE 52.5

5H

I_- .._j P (Ib/in)

-5
v

2

Pressure Load on Entire Cross-Section

P -Eh

5 2b2(iv - v 12)

(39a)

P Eh

-_H = ab(l - 2V)

Eh 3
where D =

12(1 - v2)

= bending rigidity

2
= 12(1 - q)b21ah

2_ .

h = wall thickness

E = Young's modulus

= Poisson's ratio

m = J12(l - V 2)

(39b)

The way in which these four types of loading can be combined to represent

the total load for each type of 0-ring is illustrated by the examples of

Section 52.2.

In the above load-deflection relations _ appears as an important

parameter. The physical significance of _ is discussed in Section 52.4, For

most 0-rings, _ is small. Our results _e restricted to _2_I0. Among these

load-deflection relations, Eq. (I) is of primary importance since it gives the

spring constant of the O-ring.

In addition to the load-deflectlon relations, we would also like to

know the stresses in the ring under load so that overstressing does not occur.

The stress and moment resultants under the four basic loadings are given in

Eqs. (I0), (26), (36), and (38) of Section 52.4. When these resultants are

known, the stresses are given by

{_@imax N0=__+ __6M_)h2

max = _- + h 2

52-4

87



It is in general not possible to ascertain by inspection at what angle @ the

right-hand side of these equations becomes a maximum under the particular

loading. However, this can be found out by using a computer program, since

the work involved isstraightforward.

8S
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52.2 Illustrative Examples

We shall illustrate the application of the results of the preceding

section by considering 0-rings of the following sizes:

(I) 50.D. x 1/4 x 0.012 wall, type 321 stainless steel

(2)20 O.D. x 1/4 x 0.012 wall, type 321 stainless steel

The parameter

2
= 12(1 - v2)(b2/ah)2--

=_196 (5" 0-ring)185 (20" 0-ring)

The bending rigidity

D = Eh3/12(l - V 2) = 4.75 Ib-in

From Eq. (lla), the spring constants of the O-rings are

F D

_ =(0 149- 0:1.4--1 )b 3
I + 14.4/_ 2

:_18800 Ib/in 2 (5" 0-ring)
(

6400 Ib/in2(20 '' 0-ring)

If a unit compression load of F = 90 ib/in is required to seat the O-rings, the

groove depth should be smaller than the 0.D. of the O-rings by the amount

90
in (5" 0-ring)

18800

90
in (20" 0-ring)

16400

For this loadings, the bending stress is predominant (see Eqs. (I0)). The

maximum stress occurs at the top and bottom of the 0-ring.

6M_ 6Fb [i 2 ](a_)max h 2 h2 [_ 3_(I + 14.4/_ 2)

.32 X 105 psi (5" 0-ring)= .47 x 105 psi (20" O-ring)

(_@)max 0.3 (_@)max

These are indeed very high stresses and outer fibres of the 0-ring would have

yielded locally, But plastic flow will be contained by the neighboring elas-

tic regions so that the load-deflection relations obtained previously will

still hold approximately.
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Suppose that after the O-rings are installed, fluid under a pressure of

300 psig passes through the connector. We would like to know the O-rlng

compression F for

(I) Standard 0-rings

(2) Pressure-energized 0-rlngs

The load on the standard 0-ring is now a combination of the basic loadings

as shown when friction is neglected.

,300 Ib/in 2 __

F

[

! 30oib,in2
[ (3)

P = 300 Ib/in 2

(4)

From Eq. (39a) we obtain the shortening of the vertical tube diameter under

loading (4) as

- 2Pb 2(I - 0.3/2)
5 =
v Eh

-5 .

= 2.22 x I0 zn.

The extension of the vertical tube diameter under loading (3) is, from Eq. (37a_

-_ =

v D

1.52 x I0 -2 in. (5" 0-rlng).72 x 10-2 in. (20" 0-ring)

The combined effect of loading (3) and (4) is that the vertical diameter of the

tube would extend by the amount

1.52 x 10-2 - 2.22 x 10-5 = 1.52 x 10 -2 in. (5" 0-rlng)

1.72 x 10-2 - 2.22 x 10-5 = 1.72 x 10-2 in. (20" 0-rlng)

Since the bolts clamping together the flanges are much more rigid than the
0-ring, these would-be extensions of the vertical tube diameter are almost

Completely restrained. The corresponding increase in 0-ring compression _"

is equal to



(spring constant) x (extension restrained)
)0.0152 x 18800 = 296 ib/in (5" O-ring)
<

.0172 x 16400 323 Ib/in (20" 0-ring)

The maximum stress due to loading (4) is small compared with that due to

loading (3). For loading (3) it can be seen from Eqs. (36) in Section 52.4

that the ratio between the bending stress and the membrane stress is

6M_/h 2

N-_7_ = 0(_) = 0(i) for both O-rlngs

Therefore, the bending stress and the membrane stress are of equal importance.

It can also be seen from Eqs. (I0) and (36) that the ratio of bending stress

for loading (i) and (3) is of the order of

Therefore, an internal pressure of 300 psig adds a great deal to the stresses

in the O-ring, This is all the more important, since considerable addition

of the stress is in the form of membrane stress. • This indicatesthat an

O-rlng of much thicker wall should be used. Notice that doubling the wall

thickness would reduce the membrane strsss approximately by half and the

bending stress by three quarters. The spring constant of the 0-ring, however,

becomes eight times as large.

In considering the effect of internal pressure in the above, we have

not considered the relief of O-rlng compression due to bolt and spacer extension.

Given the bolt and spacer dimensions, this can be calculated readily. However,

the spring constant of most O-rings is so small compared with that of the

bolts and spacer, that the reliefof 0-ring compression is usually negligible.

For a pressure-energlzed 0-ring the load is a combination of the basic

loading (I) and (3)

F F

<_00 Ib/inI='I <I)

; i !
+

T = 300 Ib/in 2

®

(i) (3)

This differs from the load on a standard O-rlng shown on Page 52-7 only in the

absence of the basic loading (4), Since it is seen in the preceding case that

the _aic loading (4) does not add much to either the deflection or stresses

o_ the O-zing, the _o_clusions reached for the standard 0-wlngs apply also to

the pressure-energlzed 0-rlngs. This is a very surprising conclusion, since

it shews that within the small-deflect!on elastlc theoKy the standard 0-rlng

has self-energizing action just as the vented "pressure-energized 0-rlngs."
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Another important conclusion can be obtained by reversing the direction

of pressure in loadings (3) and (4) for the standard 0-rings. It can be seen

that in this case the 0-ring compression decreases with the increase of

external pressure. In other words, the pressure-energized 0-ring is entirely

ineffective against external pressure unless a back-up ring is used.

We shall consider next that in addition to initial seating compression

and internal pressure, the ring is backed up by the flange (or a back-up ring)

which exerts a reaction force on the 0-ring. Suppose that the inside diameter

of the flange is to be equal to the outside diameter of the compressed 0-ring

so that during initial seating the flange (or back-up ring) will not react on

the O-ring. What should be the inside diameter of the flange? If the 0-ring

is then subjected to 300 psig internal pressure, what is the reactive force

between the O-ring and the flange (or back-up ring), and what is the change in

O-ring compression? From Eq. (lib) we see that during initial seating the

outside diameter of the 0-ring increases by the amount

b3F_.137 - 0.141 ]1 + 14.4/_ 2

5H = D

10o00418 in. (5" 0-ring)

= _0.00500-- in. (20" 0-ring)

L
Therefore, the inside diameter of the flange should be 5 + 0.00418 in. for the

5" 0-ring and 20 + 0.00500 for the 20" 0-ring.

When an internal pressure of 300 psig is now applied, the outside

diameter of the O-ring would tend to increase if it were not restrained by

the flange. Since the flange is much stiffer than the 0-ring, we may assume

that these would-be expansions of the 0-ring are completely suppressed. The

result is that there is a circumferential pressure R Ib/in between the 0-ring

and the flange (or back-up ring) as well as an increase L_F of the 0-ring

compressions. The forces R and _F can be determined from the condition that

5H = 8v = 0

due to the combined action of R, L_F and the 300 psig internal pressure.

We have already found

_-0.0152 in.

{5v)300 psig = _0.0172 in.

From Eq. (37b) we have

(5H)300 psig

(5" O-ring)

(20" O-ring)

a2(300) [0.636 i:18 ]

L I + 14/_2J

30 x 106(0.012)
6-

=J0.00227 in. (5" O-ring)

0518 in (20" O-ring)
L
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Also

f_Fl18800

(Sv)Z_F =_L%F/16400

and from Eq. (llb)

(SH)_F =

(5" 0-ring)

(20" 0-ring)

(_F)b 3 [0.137 -

4.75
f

0. 141 ]

1 + 14.4/_2J

Z_F/21500 (5" 0-ring)

= h_F/18000 (20" 0-ring)
x..

Similarly from Eqs. (27) we obtain

R(I/8)3 [0. 193 _ 0.199i + 14.4/_ 2 +

(Sv)R = 4.75
ff

= )-R/15400 (5" O-ring)

R/13200 (20" 0-ring)

0.318 + 2/<I + 14/_ 2),
(SH) R = -

30 x I06(0.012) (i/8)/a 2

R/I0800 (5" O-ring)

= I-R/1330 (20" O-ring)

Therefore, from the equations

(5v)300 psig + (Sv)_F + (Sv)R = 0

we obtain

(5H)300 psig + (SH)z_F + (SH)R = 0

R = 732 Ib/in

LkF = 1180 Ib/in

for the 5" O-ring and

R = 98.5 Ib/in

_F = 404 Ib/in

for the 20" O-ring.

Of course, the 0-ring would have failed under such heavy load.

result indicates

52-10
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(i) The use of a back-up ring is desirable since it increases the

O-ring compression.

(2) Clearance between the 0-ring and back-up ring may be needed to

avoid overstressing.

(3) As far as increasing the O-ring compression is concerned, the

reaction of the back-up ring is more effective than the internal

pressure, This indicates that, for sealing against external

pressure, the tendency of the external pressure to relieve the

0-ring compression is more than compensated by the reaction of

the back-up ring. Therefore, 0-rings can be used to seal against

external pressure, provided a back-up ring is used.
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52.3 Some Considerations of the_Plastic Behavior of Hollow Metallic 0-rin_s

Most of the hollow metallic 0-rlngs currently in use operate in the

plastic range. A satisfactory elasto-plastlc analysis is very complicated.

Some consideration of their plastic behavior are presented in this section

based on very much simplified assumptions. The results obtained include:

I. A conservative estimate of sealing force.

2. An estimate of the decrease of the sealing force when the flanges

tend to separate as a result of differential thermal expansion,

external loads, etc.

3. An estimate of the area of contact between the 0-ring and the

flange.

They seem to correlate well with the limited experimental data available.
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52.3.1 Yielding Load and Estimate of Sealin$ Force

At the beginning of the process of tightening the connector, the

compression is small and the O-ring behaves elastically. The elastic solution

presented in Section52_2 is valid. It was shown that the predominating

stresses are bending stresses. Therefore, for simplicity we shall neglect the

membrane stresses completely. The maximum bending moments occur at the outer

and inner surfaces of the top and bottom of the O-ring.

Fb

M_=

M@ = vM¢

(4O)

The corresponding maximum stresses are

6Fb

o¢ = _h 2

(41)

where

F is the compressive force

b is the tube radius of O-ring

h is the wall thickness of O-ring

v is Poisson's ratio of O-rlng material

According to Mises' yield criterion, initial yielding at these points begins

when

¢ J l-v+v 2 = yield strength of material in tension test, Y (42)

or, the installation force causing the O-ring to begin yielding as

_h2y

FY ield = I (43)
v+v 26b %/I-

Further increase of load will spread the plastic zone both outward and in

depth. The load deflection curve will begin to deviate from a straight-line.

The deflection will still remain small since the plastic deformation will be

contained by the neighboring elastic material. With further increase in load

the plastic zone will finally penetrate the wall thickness at the top and the

bottom of the O-ring. The material at these points will have very small

bending rigidity and behaves more or less like a hinge. It can be easily shown



that the bending momentcausing the hinge to occur is 3/2 times the momentof
initial yielding if the small effect of work-hardening is neglected, i.e.

Mhlnge = 1.5Myleld
1.5b h_ (44)

- F =
yield

4_/1-v-t-v 2

We shall call the load at which the plastic hinge occurs the hinge load. It

should be expected that for loads greater than the hinge load, the deflection

of the O-rlng increases very much faster even though unrestricted deflection

still does not occur because one hinge alone does not transform the O-ring to

a "mechanism". Referring to a typical load deflection curve we are saying

that Fhing e corresponds to the point A

Load

Fhinge

Fyield

I

Defle_ion

Fig 52.6 Load-Deflectlon Curve of an O-rlng

A rough estimate of Fhlng e can be made that, similar to the bending moment

Fhlng e = 1.5 Fyield

_h2y (45)

4b_- .¢-I-v2

Referring to Fig. 52.6, it can be seen that F.. as given above serves as a

good lower estimate of the sealing force for most O-rlng applications.

A load-deflectlon diagram for s 1/8 in. tube size, 0.010 in. wall, type 321

stainless steel O-rlng is given in Reference I. It shows that the load-

deflection curve begins to deviate from a straight llne at a load of

approximately 75 Ib/in and large deflection beglnsto occur around a load of

120 Ib/in. If we take Fyield as 75 ib/in, Eq. (43) gives us the yield limit

of the material in tension as:

52- 14
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y = (75) (6) (1/16) _i-0.3+(0.3). (0.3i-.-= 80,000 psi
2

_(0,01)

If we take 120 Ib/in as Fhlnge, then

Fhing e = 120/75 Fyleld = 1.6 Fyleld

which seems to correlate well with Eq. (45).

52.3.2 Spring Constant of 0-ring When Flanges are Separating

After the 0-ring is installed a conservative estimate of the sealing

force is given by Eq. (45) The sealing force decreases if the flanges tend

to separate from each other due to differential thermal expansion, adverse

external loads, etc. The amount of decrease of the sealing force depends on

the resilience of the 0-ring. If the effect of the change of the geometry of

the 0-ring is negligible then it is a fundamental hypothesis of the theory of

plasticity that the spring constant of the 0-ring during unloading is approxi-

mately the same as the elastic spring constant of the 0-ring. Indeed, this

fact is substantiated by the load-deflection diagram of Reference i. The

elastic spring constant of most 0-rings is given by Eqo (lla). For a non-

pressure-energized 0-ring the decrease in sealing force due to separating
of flanges is therefore

(spring constant of O-ring as given by Eq.(lla)) x (amount of separation)

52.3.3 Area of Contact Between 0-Ring and Flange

In the following we shall present a simple method of estimating the

area of contact between the 0-ring and the'flange's based on energyconsiderations.

The workdone by the compressive load can be approximated by the shaded area

in Fig. 52.6, i.e.

(Fhing e) x (0-ring compression, _) (46)

Assume that all this work is done in flattening a portion of the O-ring and

that in the flattened portion, the moment is at the fully plastic moment

(Mhinge). This part of the work is given approximately as

-ic

2Mhingeg _ 4MhingeSin -_ (47)
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Mhinge _

.Z

_i g

F

L

inge

nge
F

Equating the work given by Eqs. (46) and (47) and making use of Eqs. (44) and

(45) we obtain the following relation between the width of the area of contact

c and the amount of 0-ring compression 8

2--_= sin (48)

For a 1/8 in. tube diameter O-ring compressed 0.035 in , the width of area of

contact is

I 1/16

= O. 053 in.

which seems to correlate well with the measured value of

c = 3/64 in. = 0.047 in.

on one of the O-rings available to us.

The average sealing stress is of course the sealing force divided by

the area of contact. However, the sealing stress is far from being uniform

over the area of contact and the maximum sealing stress is much greater than

the average stress. The distribution of sealing stress has the general shape

of the shaded area in the following figure.

/ F/2 F/2 \
i 1

This is necessary because the flattened portion of the 0-ring is at approximately

constant moment and in order to maintain a constant moment the sealing force

has to concentrate near the edges of the area of contact.



52.4 Appendix - Elastic Analysis of Hollow Metallic 0-Rings

52.4.0 Introduction

The hollow metallic 0-rings used as static seals are made of metal

tubing formed into rings by welding the two ends together. The three basic

types of 0-rings (Ref. I) are shown in Fig. 52.1. Essentially they are shells

under axi-symmetric loading. As a first step toward the general analysis, they

will be treated as elastic thin shells under axi-symmetric loading. Specifically

excluded from the present analysis are stability, large deflection, plasticity
and thick-shell effects.

The appropriate equations were given by Clark (Ref. 2). Much the same

formulation and symbols shall be used here. Fig. 52.7 shows the dimensions of

an O-ring and the coordinate axes. Also shown are our conventions about positive
senses of the stress resultants and load intensities.

/
P

rfL_l • Z

a _-_b _

FIGURE 52.7

Co-ordinates for Elastic Ar_alysis of O-Ring

For most 0-rings the ratio of tube diameter and ring diameter is small

and can be neglected in comparison with unity (b/a_l). This makes the outer

half and inner half of the 0-ring structurally symmetric. It can be shown

from Ref. 2 that now the governing equations for an O-ring assume the following
simple form

d2_ + _/ ._in #i _ cos

d_ 2

d2_ dP H

--d_2 - _ sin @ = " d-_

(la)

(ib)

where _ = Ooriginal - Odeformed = rotation of shell

= m_ H = non-dimensionalized horizontal stress resultant
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j-_= m_ 2 V = E--_j'mabrPvd0 = non-dimensionalized vertical stress resultant

PH mab ==- PH non-dimensionalized horizontal load intensity
Eh 2

mb 2

ah

m =_12(I- _)

V = Poisson's ratio

E = Young's modulus

h = wall thickness of 0-ring

When the rotation of the shell _ and the stress function _ are known, the stress

and moment resultants are given by

Eh2 0) (2a)N0 =_-a _ cos 0 +_ sin

Eh2[d_
N@ = _-[_ + PH] (2b)

Q - maEh2 _ _ sin 0 +_cos 0] (2c)

Eh 3 d_ (2d)
M0 = dO

m2b

M 0 = VM 0 (2e)

and the displacement components in the vertical and horizontal directions by

= -b[(6 cos 0 - ¢0 sin 0)d0 (3a)w

J

u b f(_ sin 0 + £0 cos _)d0 (3b)

or alternatively

u = a(N 8 - vN0)/Eh

where the meridianal membrane strain

(3c)

_0 = (N0" VN@)/Eh (3d)

Our aim is to find solutions of Eqs. (I) which satisfy the prescribed

stress boundary conditions and are periodic in 0 with period 2n.

Referring to Fig. 52.l, we see'that the load on the 0-rings consists of

four baglc types. The solution for each will be given in the following.

Proper combination of these gives us the solutions for the three types of

O-rings.
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52.4.1 Solutions for Loading <a) - Uniform Axial Compression

[/\\_f#_ (force per unit length)

This loading is typified by the initial seating compression.

For this loading PH = 0

51 = ma F 0<_<_

Eh 2 2

ma F -_<_<0

Eh 2 2

We can expand the right-hand side of Eq. (la) as a convergent Fourier Series.

C,<D

__CZcos _ = - _maF 4 _I n sin 2n_Eh 2 _ 4n 2 - 1

The solutions of Eq. (i) can be shown to be

= _maF _IEh 2 A2n sin 2n_

-1 ]oo (.n2 Eh 2 I (2n 1)2 (n- I)

where 2 [2(4n 2 + I) A2<n + I)
A2n + _

16n2 L (4n2 - 1) 2 A2n (2n + 1) 2

(4a)

I)@ (4b)

A2(n- 1)I = I

(2n- 1) 2j n(4n 2 - I)_

(n = I, 2, 3,---) (5)

A0=O

It is interesting to consider first the limiting case _,0. As is well-known

from the study of the bending of curved tubes (Refs 3, 4), this implies that

the flattening of the tube cross-section introduces negligible strain in the

circumferential fibres of the 0-ring. Therefore, the solution should agree

with the corresponding case of the bending of a thin ring by equal and oppo-

site forces (Ref. 5) if the plate bending rigidity is replaced by the beam

bending rigidity. Indeed, it can be easily shown from Eqs. (4) that

_/_+0 = 0 (6a)
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Fb 2 _ sin 2n_

_0 =_T _ n(4---n2__ I)

Fb 2"x

ix L )+

where the bending rigidity D = Eh3/12(1 - V2).

(6b)

This result is not only interesting in itself but also helps us to

improve the convergence of our solutionj Eq. (4). We can rewrite Eq. (4a) as:

= %_o + _ (7)

_A i Is_n 2n0 (8a)where _ = _ 2n " n(4n _ _ l)n

(#maF)( i)_°n. _ F2<4n2 + 1_= _ - 16 L(4n2 - 1) )-" *2n -

Az<n + l)

(2n + 1)2

A2(n- i)](2n - I)2 sin 2n_
(8b)

The alternate form (8b) for _ demonstrates its superior convergence to Eq. (4a)

for 6. The form (8a) is more direct for the actual numerical evaluation of

the series. Eq. (7) admits the following interpretation. ##÷0 represents the
solution for a fictatious 0-ring with the same dimensions as the original 0-

ring but with the parameter #+0; _ represents a correction for the finite

value of the parameter p. This representation is particularly advantageous

at large _ when the convergence of Eq. (4a) becomes rather slow.

We can also improve the convergence of Eq. (4b) for _by integrating

Eq. (Ib) with _ as given by Eq. (7). This is not attempted here because

Eq. (4b) for_ is already a faster converging series than Eq. (4a) for 6 and

because the transformation would devoid of a simple physical interpretation

as Eq. (7).

For most 0-rlngs #210, and results of engineering accuracy can be

obtained by keeping one term _f the series expansion for _ and two terms of the

series expansion for _. By neglecting A 6 in Eq. (5) for n = I and n = 2 and
noting that p_10, we obtain approximately

A2 i (9a)
3_(I + #2/14,4)

A4 = 30---_+ 120_ 0 + 14,4/#2) (9b)

_. FD2 sin 20
D

3z(l + 14.41_ 2)
(9c)
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__ [ i(maF 2.4 cos _ - _ I
Eh 2 _(I + 14.4/_ 2)

I + 14.4/> 2) 3_]144/2 cos

(9d)

The stress and moment resultants can be obtained by substituting Eqs. (6b),,

(7), (9c) and (9d) into Eqs. (2).

predominating stress resultants.

I I sin _ i

FD[- _ +_ -

M_=

For this loading the bending moments are the

2 cos 2_ |

3_(I + 14.4/_ 2)J

1 2cos ]Fb sin _ +_ - 3_(i + 14.4/_ 2

OE_<_

(10a)

_0

M 0 = VM_ (10b)

Other quantities of interest are the shortening of the vertical diameter of

tube _v and extension of the outside diameter of the ring _H" From Eqs. (3)

weoaB = w(O) - w(_) = F _ ! . 4 (lla)
v g

3 +-14"4/_2) "

The first equation defines the spring constant of the O-ring

_-- = _ _ - 4/2_v 9_(i + 14.

which is of primary importance in the application of 0-rings. Notice that the

spring constant increases with _. This is as expected, since for larger B,

more of the work done by the compressive force is stored in the form of strain

energy of extension of circumferential fibres rather than flattening of the

cross-section.

52.4.2 Solutions for Loading (b) - Uniform Lateral Compression

t

R (force per unit length)
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This loading results from the reaction of the back-up ring. To take advantage
of symmetry, it is more convenient to replace the independent variable 0 by the
new variable

7 =0 --_
2

For the present loading.__= 0 and

dP H

d7 0 except at 7 0

Eqs. (I) become

d7 2 + _/ cos 7 0

d2_/

d2 _, cos 9' 0

(13)

(14)

together with the Jump condition

=ma R
4+ 0 " *- 0 Eh 2

(15)

We could express _ and* as convergent Fourier series and determine the Fourier

coefficients from Eqs. (14) and (15). The difficulty here is, however, since

is discontinuous at 7 = 0, if we should differentiate the Fourier series

representation of _, the result will not converge to d%/d7 which is needed to

calculate stresses and strains. In order to get around this difficulty, we

shall replace Eqs. (14) and (15) by the following equivalent system.

= _0 + B (16a)

= *0 + _ (16b)

.2_

d_720 + (_*)_0 cos 7 = 0 (17a)

d2_-_O = 0 (17b)

d7 2

( ) - = 2 R (17c)
7=+0 7=-0

d2_ + I__-'cos" 7 cos 7
d7 2 " _ "#'la-)O

d2_

d7 2 _ cos 7 0

(18a)

(18b)

(;v);, = + o = = - o (18c)
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The solutions of Eqs. (17) can be shown to be

_eO =I m_ [2 sin
2_Eh 2

=I] maR [7- _] 0<7£_

_+0 2_Eh2

maR 17 + _] __<7<0
2_Eh 2

_maR2_Eh2 [2 sin7+ (7- _)(I - cos 7)] 0_7-<_

+ (7+ _)(i - cosT)] -_<_7<0

can be expanded as the following convergent Fourier series

O<D

_/ = ma____R_ sin n 7
_->0 _Eh 2 I n

Therefore, Eqs. (18) become

d2_ + _ cos 7 = _/c_O cos 7
d 72

 maR[._I-----. n

 Eh2L4 sin 7 + Z n22 - I

d2_

d7----2-- _ cos 7 = 0

sin nT]

which admit the solution

C_<D

= _maR i_ A Sin n7_Eh 2 n

2 _Eh 2 n + I
+A

n - i) sin n7

where A0 = 0

2

A I +_6(AI + A3) = I/4

A
n

_2 F2 (n2 + A A 1
l)4n2 + =

+ A + n- 2 n+2 1

L(n 1)2 n (n- 1) 2 (n + 1) 2 n(n 2 - I)

(n = 2, 3, 4, ---)

(19a)

(19b)

(20a)

(20b)

(21a)

(21b)

(21c)
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Again, as in loading condition (a), we can write

where

= _ma____R A I - 1/4) siny+l An
_Eh 2 2

(22)

I

n(n2 - i) ) sin ny] (23)

B¥ neglecting (A) , in Eq. (21c) and noting that for practical O-rings
n >

_<I0 we obtain approximately

A I _ 1/4(1 + _2/14)

A2 --_I/6(i + _2/14.4)
(24)

A 3 _ (I + _2/48)/24(I + _2/14)

A4 --_(i + B2/19.2)/60(I + _2/14.4)

Keeping three terms in the series for _ and _ and simplifying the resulting

expressions by limiting to 5% accuracy, we obtain, approximately

1 1 ]_. _maR i i sin,/ + _ sin 27 + _ sin 3"/
Eh 2 2_(I + 14/_ 2)

(25a)

_ = . ma___R i .5 sin? + sin 27 +_ sin 37
Eh2 2 (I+ 14/ 2)

(25b)

The predominating stress resultants are

R(b) [I + I 2.(3.5 cos7+ 2 cos 27+ 0.8 cos 37)]NO = " 2-_ I + 14/_
(26a)

M_ =_

(_ -7) sin 7+ cos y+ I -

.bI(_ +Y) sin7 +cos?+ I

i I 2

2(_ cos7+ _ cos 27 +
1 + 14/ 

3 ]"_7 cos 37) _)'-_

2
I 2(_ cos7 + _ cos 27 ÷

I + 141B

I-_ cos 37 ) _7_0

(26b)

M 0 = VM 0 (26c)

Notice that the first term in N_represents the "hoop tension." The other
terms represent the correction _or the finite value of _ and are anti-symmetric

with respect to the vertical tube diameter Notice also when finite _ is

considerdd, M 0 no longer vanishes at the inner edge (7 = _) of the ring. From
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Eqs. (26a) and (26b) it can be shown that for the present loading

bending stress, 6 M_/hZ
= 0 (_)

membrane stress, N_/h

The extension of the vertical diameter of tube and shortening of the

outside diameter of the ring are

52.4.3

b3R _ _ 0.625-Sv = w(_) - w( - 3) =_-_- 8 i + 14/_ 2
(27a)

-SH = " 2u(0) _-_ (a) i + 6.3/(1 + 14/_ 2) (27b)

Solutions for Loading (q) - Uniform Internal Pressure on Half of Riflg

111)\

T (pressure)

This loading is represented by the internal pressure on a "pressure-energized"

O-ring. For this loading

mabT
A__ =-- sin _ 0_

Eh 2

=0

PH = mab_____Tsin
Eh 2

=0

- ___¢<0

. - _____0

The right-hand side of Eqs. (i) can be expanded as the following convergent
Fourier series

2 cos (2n - 1)_ (28a)
_cos _ = _mabTEh2 sin 2_ - _ (2n + l)(2n -3)

dPH . mab_____T coi 0 + 2 2n . sln 2n_ (28b)

- _- = EN 2 _ 4n 2 7 1

It can be shown then that Eqs. (I) have the following solution

= _mabT _-- cos (2n - I)_ (29a)
Eh 2 _ A2n - 1
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where

= mab_____TIlcos 0 +I _. sin 2n_ ]_ _ _A2n-- I-- A2n + i _I
Eh 2 _ I n(4n 2 . I) n2 sin 2n

(_gb)

2

- A3%, =A 1 + "_(A 1 "_

2 F2(n 2 + 1) A A ;.12j
An + _ A n + 2 n - 2 = 2 (30)

4n 2 L(n 2 - 1)2 n (n + 1) 2 (n- I _(n 2 - l)n 2

(n = 3, 5, 7, ---)

It is easy to show that the solution converges to the following for the limiting

case of _-_0

'mabT I__ _i]+
Eh 2 In 2J

Eh2mab---_T[cos @ + _I]_ 0__-_.__

_mab__ sin _- _ +_ sin _ +2 c°s _ - _] _7"_'_=_0

= _m___(Eh 2 If-_I sin _ +_@ +_ sin _ +_2 cos _ - J_l O<_gg

(31a)

(31b)

Therefore we can rewrite Eqs. (29) as

: _-_0 + _ (32a)

= _ + _ (32b)
_0

where

= cos nO (33a)
umabT A1 + 1/2_) cos 0 + (A n - _(n2Eh 2 - _

n=3, 5, 7. ••

= _ mabT (A2n - i- A2n + i) sin 2n@ (33b)
n

By neglecting (A) _. in Eq. (30) and noting that for practical O-rings _2<I0

we obtain approx_m_ely

--_ I + _2/192
AI=-

2_(I + _2/14) (34)

I- _2/16
A 3 =

36_(I + g2/14)
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Keeping two terms in the series for 6 and one term for _, we obtain, approxi-

mately

""'0)

(0.927 cos _ - 0.104 cos 3_) (35a)

(35b)

The predominating stress resultants are

aT_ 1 85 cos 2_]NO =-_ + _ __
(I + l--_2)J

, 1 cos - 1 sinB2T cos _ - _ + _

t

. i (0.927 sin _ - 0.312 sin 3_

2_(i + 14/_ 2) J

2T [-

i i % I
-_ cos _ +3 +-_ cos _ --_ sin

-_0

2_(I + 141_ 2)
I (0.927 sin @ - 0.312 sin 3@_ 0_@_

(36a)

(36b)

M@ : vM_ (36c)

The extensions of the vertical diameter of tube and outside diameter of ring

are

b4T_, 0.927/(1 + 14/_2). {_){_){_mt (37a)-_v = w(_) - w(O) = 4--D-

5H= 2[u(_ =--_Eh2a2T [i- 1.85/(I + 141_2)] (37b)

Eq. (37a) shows that if the parameter _ is sufficiently small, the vertical

diameter of the tube may actually decrease, resulting in a decrease in the

sealing pressure between the 0-ring and the flange surface. This may seem

to be somewhat surprising since it corresponds to a _ pressure-energizing

effect. However, if the 0-rlng is backed up by a retaining ring, then a

reactive force R would exist between the 0-rlng and the retaining ring under the

pressure T. It can be shown from Eqs. (27a), (27b) and (37b) that now the

vertical diameter of the tube always increases, resulting in a pressure-energizing

effect.
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52.4.4 Solutions for Loading _d) - Uniform Internal Pressure

P (pressure)

For this loading we have the well-known membrane solution

I b

I +-2a sin

N_ = Pb b ':_ Pb

l+_sln_

N 9 = Pb/2

= M@ = M O = 0

The corresponding increase in the outside diameter of the ring is

5H = 2a¢0 = 2a_ -V_ = a _(I - 2\,)

and the increase in tube diameter

(38)

(39a)

-5 V = 2b _ I - =--Eh (b)(2 - V) (39b)

Notice that in order to get Ne = Pb/2, we have to solve the unslmplified version
of Eqs. (I) for%with accuracy to the order of b/a. This is necessary wheneve

N_ is of the same order of magnitude as N 9. The reason for this is explained
very clearly in Ref. 6.

Notice that the stresses and deformations under this loading are much

smaller than those under loading (c). The implication of this result is the

equivalence of the following loading conditions:

(I) (2) (3)
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These figures represent the internal pressure on (i) "pressure energized"

O-ring, (2) standard O-ring, and (3) "pressure filled" O-ring. They show that

within the elastic theory all three types of O-rings behave essentially the

same.

524.5 Discussion and Conclusion

(I) The solutions of ring shells have been presented as the sum of

Ca) The solution for a fictitious ring with the same dimensions but

with the parameter _0. Physically for _ to approach zero we

must have the ring diameter very much greater than the tube

diameter.

(b) An auxiliary solution which represents the corrections for the

finite value of _.

The advantages of this representation are:

Ca) The solutions for the fictitious ring are obtainable in closed
form.

(b) The auxiliary solution converges faster than the formal Fourier

series solution, particularly when the parameter _ gets larger,

(c) Singularities in loading which give trouble to the formal Fourier
series solution are removed.

In order to illustrate the superior convergence of the auxiliary

solution, the moment M@ at the top and bottom of the 0-ring for
loading condition Ca). Is computed for two cases: _2 = I0 and

_2 = 400. For _2 = i0, the coefficients A2n'S are determined from

Eq. (5) by cutting off at n>10. The auxiliary series solution

converges so fast that the fifth term is only about 0.0015% as large

as the leading term, Eq. (10a) which keeps only the leading term

of the series has a 2% accuracy. Yet ten terms of the original

series only have a 7% accuracy. For _2 = 400, the coefficients

A2n'S are determined from Eq. (5) by cutting off at n>20. The

auxiliary series solution converges fast. The fifth term is smaller

than 0,03% of the leading term. The real merit of the auxiliary

solution, however, is not in its fast convergence when accurate

values of A2n's are known, but that the accurate solution can be

obtained without having to solve the some twenty simultaneous

equations (5) for A2n(n_20 ) . Taking an extreme case for example,

let A4, A6, .... 0, in Eq. (5), we obtain A 2 = 3.687 x 10 -3

immediately. Using this value of A 2 and keeping only the leading

term in the auxiliary Serie_we obtain a solution which is only 8%
in error, This is remarkable indeed since we know that the more

!

accurate value of the coefficients A2n s are

A 2 = 4.404 x 10-3

A4 = 7.464 x 10-3
-3

A 6 = 3.368 x I0

i
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On the other hand, five terms of the original series give a 28%

error. Even the sum of all twenty terms still has an 8% error.

(2) Simple expressions for the stresses in O-rings and for the load-

deflection relations are obtained. The spring constant of the

O-ring is given by Eq. (lla). From this the 0-ring squeeze needed

for a given seating pressure can be determined. Designers would

wish to know the variation of sealing pressure with internal pres-

sure. The load-deflection relations, Eqs (II), (27) and (37),

enable us to determine the sealing pressure when the internal

pressure is given.

Within the assumptions of the present elastic theor_ all three types

of O-rings behave similarly. The use of a back-up ring is desirable,

since in addition to its principal function of retaining, it also

helps to increase the sealing pressure.

(3) It seems that in the current applications, 0-rings are squeezed to

such an extent that plasticity and large deflection effects are

important. These problems are extremely complicated. For most

0-rings the parameter _ is small. The approximation _4) simplifies

the problem a great deal and gives promise to solutions that take

these complicating factors into consideration.

The essential simplifications are:

(a) Under axial cor_ression (loading (a)) the flattening of the tube

cross-section introduces negligible circumferential extension.

The problem goes over to that of a cylinder.

(b) Under circumferential loads the circumferential stress resultants

N@ of all the fibres are the same and equal to the "hoop tension'_

the magnitude of which can be determined readily. The 0-ring

now becomes statically determinate. The other stress resultants

can be determined from the equations of equilibrium and the

deformation found from the appropriate stress-straln laws.
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53. COMPARISONS AND CONCLUSIONS

by

B. T. Fang

Pressure-energized cantilever-type and metallic 0-ring seals are

analyzed in Sections 51 and 52, respectively. As compared with some other

types of seals they are characterized by the following advantages_

(i) High resiliency

(2) High localized sealing stress

(3) External load taken by other components of the connector.

(4) Lower clamping pressure needed, thus lighter flanges.

(5) Compatibility to extreme temperatures and to most fluids.

(6) Ability to seal at high pressure

Possible disadvantages are:

(l) Since the seal is formed by hard metal-to-metal mating, a

smooth surface finish is required if a coating material is

not used. When a soft coating material is used, there is

the difficulty of forming a good coating, particularly at

extreme temperatures.

(2) Because of the lighter cross-section and lower total

sealing force, relative _otion between the gasket and the

flanges is more likely to occur as a result of internal

pressure, differential thermal expansion and vibrations.

The ability to reseal is of importance.

In Section 51 a detailed study of several common types of pressure-

energized seals is made, and design procedures are given. Characteristics

of seals are shown which give the increase of sealing force and change of

maximum stress with internal pressure. Since the sealing force increases

with the fluid pressure, it may occur that a not-too-well-designed seal may

function properly at high pressures but leak at low pressure. Among the

different types of seal legs considered, the tapered leg with a lip on the

end is the best design, It gives greater sealing force at low pressures and

is subjected to lower bending stresses, while its high-pressure sealing

ability is only insignifican_y inferior to that of the uniform-leg design.

Possible relative radial and rotational motions of the seal and the flanges

are also studied in Section 51. Since, when under pressure, the sealing

force is much greater than the initial sealing compression, there seems to

be no reason why reseal cannot be effected after relative motion has

happened. Further experimental work is desired to see if there are any yet

unknown factors which prevent this reseal. The sealing-force-versus-pressure
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characteristics in Section 51 are obtained without considering the sep-
aration of flanges due to pressure. The gross flange deformation is treated
in Section 41. The consideration of the seal characteristics as well as
the gross flange deformation is illustrated by design example in Section
13.2.

In Section 52 the hollow metallic O-rings are investigated. A general
elastic analysis is made. It is found that the standard and pressure-filled
type 0-rings also have somepressure-energizing effect. As comparedwith
the standard 0-rings, the pressure-filled 0-rings can withstand higher
pressure without buckling. The pressure-energizing effect of the pressure-
energized type 0-rings should be greater than the corresponding effect of
the other two types of 0-rings. Unfortunately because of the plasticity
and large deformation effects, reliable quantitative information is lacking.
Further experimental work in this respect is needed. In general, since the
0-rings operate in the plastic range, their behavior is less well defined
than that of the pressure-energized seals discussed in Section 51. The re-
sult of 0-ring analysis is illustrated by a design example in Section 13.1
for a flanged connector sealed by an O-ring.

As to the relative merits of the cantilever-type seals treated in
Section 51 and the hollow metallic O-rings in Section 52, the following
general conclusions can be made:

(i) For a well-designed cantilever-type seal, the seal stays
in the elastic range. The variation of sealing force with
pressure in the system is accurately known. The gasket is
reusable. The 0-ring is compressedto the extent that
large plastic deformation occurs. The sealing force is
less accurately knownandthe 0-ring is not reusable.

(2) Whenthe 0-ring is compressed, it expands radially and
rests on the mechanical back-up provided. Part of the
radial pressure is taken by the mechanical back-up rather
than as hoop tension of the 0-ring. For the cantilever-
type seal, the radial pressure is mainly taken by hoop
tension in the web. More critical tolerances on the di-
mensions of the seal and the mechanical back-up are re-
quired if we should want to design the cantilever-type seal
in such a way that the radial pressure is taken by the
mechanical back-up.

(3) Rotation of the seal cross-section is less a problem with

the 0-ring than with the cantilever-type pressure-energized

seal when there is differential radial growth of the two

flange faces.

116
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